
MANUAL

final
public (B)
2008-12-16
H80592-20e-ID-B.doc

OBID®

ID FECOM
Version 2.08.04

Software-Support for the

Serial Interface

For 32-Bit Operating Systems

Windows 2000/XP/Vista

and Windows CE

and Linux

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 2 (of 36) H80592-20e-ID-B.doc

Note

© Copyright 1998-2008 by FEIG ELECTRONIC GmbH
Lange Straße 4
D-35781 Weilburg-Waldhausen
Germany
eMail: obid@feig.de

This manual supercedes all previous editions.
The information contained in this manual is subject to change without notice.

Copying of this document, and giving it to others and the use or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the
payment of damages. All rights are reserved in the event of the grant of a patent or the
registration of a utility model or design.

The information contained in this manual has been gathered with all due care and to the best of our knowledge. FEIG
ELECTRONIC GmbH assumes no liability for the accuracy and completeness of the data in this manual. In particular,
FEIG ELECTRONIC GmbH cannot be held liable for consequential damages resulting from inaccurate or incomplete
information. Since even with our best efforts this document may still contain mistakes, please contact us should you find
any errors.

OBID® and OBID i-scan® are registered trademarks of FEIG ELECTRONIC GmbH.

 Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

 Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries

 Linux® is a registered Trademark of Linus Torvalds.

mailto:obid@feig.de

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 3 (of 36) H80592-20e-ID-B.doc

Licensing agreement for use of the software
This is an agreement between you and FEIG ELECTRONIC GmbH (hereafter "FEIG") for use of the ID FECOM program library and the
present documentation, hereafter called licensing material. By installing and using the software you agree to all terms and conditions of
this agreement without exception and without limitation. If you are not or not completely in agreement with the terms and conditions, you
may not install the licensing material or use it in any way. This licensing material remains the property of FEIG ELECTRONIC GmbH and
is protected by international copyright.

§1 Object and scope of the agreement

1. FEIG grants you the right to install the licensing material provided and to use it under the following conditions.

2. You may install all components of the licensing material on a hard disk or other storage medium. The installation and use may also
be done on a network fileserver. You may create backup copies of the licensing material.

3. FEIG grants you the right to use the documented program library for developing your own application programs or program
libraries, and you may sell the runtime file FECOM.DLL, FECOMCE.DLL or LIBFECOM.SO.x.y.z1 without licensing fees under the
stipulation that these application programs or program libraries are used to control devices and/or systems which are developed
and/or sold by FEIG.

§2. Protection of the licensing material

1. The licensing material is the intellectual property of FEIG and its suppliers. It is protected in accordance with copyright, international
agreements and relevant national statutes where it is used. The structure, organization and code of the software are a valuable
business secret and confidential information of FEIG and its suppliers.

2. You agree not to change, modify, translate, reverse develop, decompile, disassemble the program library or the documentation or
in any way attempt to discover the source code of this software.

3. To the extent that FEIG has applied protection marks, such as copyright marks and other legal restrictions in the licensing material,
you agree to keep these unchanged and to use them unchanged in all complete or partial copies which you make.

4. The transmission of licensing material in part or in full is prohibited unless there is an explicit agreement to the contrary between
you and FEIG. Application programs or program libraries which are created and sold in accordance with §1 Par. 3 of this
Agreement are excepted.

§3 Warranty and liability limitations

1. You agree with FEIG that is not possible to develop EDP programs such that they are error-free for all application conditions. FEIG
explicitly makes you aware that the installation of a new program can affect already existing software, including such software that
does not run at the same time as the new software. FEIG assumes no liability for direct or indirect damages, for consequential
damages or special damages, including lost profits or lost savings. If you want to ensure that no already installed program will be
affected, you should not install the present software.

2. FEIG explicitly notes that this software makes it possible for irreversible settings and adaptations to be made on devices which
could destroy these devices or render them unusable. FEIG assumes no liability for such actions, regardless of whether they are
carried out intentionally or unintentionally.

3. FEIG provides the software „as is“ and without any warranty. FEIG cannot guarantee the performance or the results you obtain
from using the software. FEIG assumes no liability or guarantee that the protection rights of third parties are not violated, nor that
the software is suitable for a particular purpose.

4. FEIG call explicit attention the licensed material is not designed with components and testing for a level of reliability suitable for use
in or in connection with surgical implants or as critical components in any life support systems whose failure to perform can
reasonably be expected to cause significant injury to a human.
To avoid damage, injury, or death, the user or application designer must take reasonably prudent steps to protect against system
failures.

1 x.y.z represents the actual version number

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 4 (of 36) H80592-20e-ID-B.doc

§4 Concluding provisions

1. This Agreement contains the complete licensing terms and conditions and supercedes any prior agreements and terms. Changes
and additions must be made in writing.

2. If any provision this agreement is declared to be void, or if for any reason is declared to be invalid or of no effect, the remaining
provisions shall be in no manner affected thereby but shall remain in full force and effect. Both parties agree to replace the invalid
provision with one which comes closest to its original intention.

3. This agreement is subject to the laws of the Federal Republic of Germany. Place of jurisdiction is Weilburg.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 5 (of 36) H80592-20e-ID-B.doc

Contents:

1. Introduction..6

2. Installation..7

2.1. 32-Bit Windows 2000/XP/Vista ...7

2.2. Windows CE ..7

2.3. 32-Bit Linux..8

3. Incorporating into the application program ..9

4. Changes since the previous version..9

5. Programming Interface.. 10

5.1. Overview ..10

5.2. List of functions ..11

5.3. Event flagging for control lines ...12
5.3.1. FECOM_OpenPort ...13
5.3.2. FECOM_ClosePort ...14
5.3.3. FECOM_DetectPort..15
5.3.4. FECOM_GetPortList...16
5.3.5. FECOM_GetDLLVersion ..17
5.3.6. FECOM_GetErrorText ..17
5.3.7. FECOM_GetLastError ..18
5.3.8. FECOM_GetPortHnd..19
5.3.9. FECOM_GetPortPara...20
5.3.10. FECOM_SetPortPara ...21
5.3.11. FECOM_DoPortCmd ..22
5.3.12. FECOM_AddEventHandler...23
5.3.13. FECOM_DelEventHandler..25
5.3.14. FECOM_Transceive ...26
5.3.15. FECOM_Transmit...27
5.3.16. FECOM_Receive..28

6. Appendix .. 29

6.1. Error codes ..29

6.2. List of Parameter Codes...31

6.3. List of constants for the FECOM_EVENT_INIT structure ..33

6.4. Revision history ..34

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 6 (of 36) H80592-20e-ID-B.doc

1. Introduction

 The ID FECOM support package is intended to assist in programming communications-oriented
software and supports the languages ANSI-C, ANSI-C++ as well as any other language which can
invoke C functions.

 The support package provides a simple function interface for the serial interface of a PC running
under 32-Bit Windows 2000/XP/Vista and Windows CE and 32-Bit Linux, and has been especially
designed for use together with other support packages (e.g. ID FERW, ID FERWA, ID FEISC).

 The support package for Windows 2000/XP/Vista consists of the following components:

 File Use

 FECOM.DLL DLL with all functions

 FECOM.LIB LIB file for linking with C/C++ projects

 FECOM.H Header file for C/C++ projects

 The support package for Windows CE consists of the following components:

 File Use

 FECOMCE.DLL DLL with all functions

 FECOMCE.LIB LIB file for linking with C/C++ projects

 FECOM.H Header file for C/C++ projects

The support package for 32-Bit Linux consists of the following components:

 File Use

 LIBFECOM.SO.x.y.z1 Function library

 FECOM.H Header file for C/C++ projects

 Note: The library is compiled under SuSE Linux 9.1 with the GNU Compiler Collection V3.3.3.

1 x.y.z represents the actual version number

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 7 (of 36) H80592-20e-ID-B.doc

 2. Installation

2.1. 32-Bit Windows 2000/XP/Vista

Installation must be performed manually:

• Copy FECOM.DLL into the project directory (recommended) or the system directory of
Windows.

• Copy FECOM.LIB into the project or LIB directory.

• Copy FECOM.H into the project directory or INCLUDE directory.

2.2. Windows CE

 Installation is quite simple: just copy the files described below to the corresponding directories.

• Copy FECOMCE.DLL into the system directory of the Windows CE system.

• Copy FECOMCE.LIB into the project or LIB directory.

• Copy FECOM.H into the project or INCLUDE directory

Note: you cannot use the DLL together with embedded Visual Basic 3.0.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 8 (of 36) H80592-20e-ID-B.doc

2.3. 32-Bit Linux

 Installation is quite simple:

• copy the files described below to the corresponding directories.

• create a symbolic link to the library file libfecom.so.x.y.z1 in the directory /usr/lib:

 cd /usr/lib

 ln –s /<Directory>/libfecom.so.x.y.z libfecom.so.x

 ln –s /<Directory>/libfecom.so.x libfecom.so

 ldconfig

 Note: The library is compiled under SuSE Linux 9.1 with the GNU Compiler Collection V3.3.3.

1 x.y.z represents the actual version number

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 9 (of 36) H80592-20e-ID-B.doc

 3. Incorporating into the application program

 If the LIB file (only Windows) was made known to the development tool, any function may be
immediately used. This presumes of course the declaration of the DLL/SO functions with an
INCLUDE instruction within each source file that invokes FECOM functions.

 4. Changes since the previous version

• Windows: Improvements for remote access with Windows Server

• Linux:

Please note also the revision history in the Appendix to this document.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 10 (of 36) H80592-20e-ID-B.doc

 5. Programming Interface

 5.1. Overview

 The FECOM library encapsulates all the functions and parameters which the user needs in order to
manage one or more serial ports open at the same time. The object-oriented internal structure (see
Fig. 1) is intentionally configured as a function interface to the outside world. This gives it the
advantage of being language-neutral.

 The library has self-administration, thereby freeing the application program from having to buffer
store any values, settings or other parameters. The driver manager in FECOM contains a list of all
generated port objects, and each port object administers all the settings relevant to its port within
its local memory.

Driver Manager

FECOM_ClosePort

FECOM_GetPortList

FECOM_Transceive

FECOM_Transmit

FECOM_GetPortPara

FECOM_SetPortPara

FECOM

FECOM_OpenPort

FECOM_GetPortHnd

FECOM_GetDLLVersion

FECOM_Receive

Port Object
Driver

- Port handle
- Parameter
- Event handler

COM:1

COM:n

- List of port handles
- Version number

Port Object
Driver

- Port handle
- Parameter
- Event handler

Port Object
Driver

- Port handle
- Parameter
- Event handler

COM:2

 Fig. 1: Internal structure of FECOM

Before you can first communicate, a port object must be created. This is automatically done by the
FECOM_OpenPort function. If this function was executed without error, a return value is received
with a handle that can be administered by the application program. Unambiguous identification of
the opened port object is only possible with this handle. The handle(s) do not however have to be
saved in the application program, since the library driver manager maintains a list internally of all
opened COM Ports. This list can be called with the FECOM_GetPortList function. The handles
that one thereby receives successively can be used with the FEDCOM_GetPortPara function to
read out all the parameters pertaining to this port, including the port number.

A port object generated with FECOM_OpenPort must always be deleted from memory using the
FECOM_ClosePort function, which also closes the COM port.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 11 (of 36) H80592-20e-ID-B.doc

If an application is opened multiple times, each program (instance) receives an empty port list with
the function call FECOM_GetPortList. This prevents a mixing of access rights under different
program instances. Of course a COM port can only be opened once, since it is physically present
only once.

 Every library function (exception: FECOM_GetDLLVersion) has a return value which in case of
error is always negative.

 5.2. List of functions

 Note: UCHAR is used as an abbreviation (#define) for „unsigned char“. In Visual Basic and Delphi
the byte is the compatible data type (see contents of FECOM.BAS/FECOM.PAS).

• int FECOM_OpenPort(char* cPortNr)

• int FECOM_ClosePort(int iPortHnd)

• int FECOM_DetectPort(int iPortNr)

• int FECOM_GetPortList(int iNext)

• void FECOM_GetDLLVersion(char* cVersion)

• int FECOM_GetErrorText(int iErrorCode, char* cErrorText)

• int FECOM_GetLastError(int iPortHnd , int* iErrorCode, char* cErrorText)

• int FECOM_GetPortHnd(char* cPortNr)

• int FECOM_GetPortPara(int iPortHnd, char* cPara, char* cValue)

• int FECOM_SetPortPara(int iPortHnd, char* cPara, char* cValue)

• int FECOM_DoPortCmd(int iPortHnd, char* cCmd, char* cValue)

• int FECOM_AddEventHandler(int iPortHnd, FECOM_EVENT_INIT* pInit)

• int FECOM_DelEventHandler(int iPortHnd, FECOM_EVENT_INIT* pInit)

• int FECOM_Transceive(int iPortHnd, UCHAR* cSendProt, int iSendLen, UCHAR* cRecProt, int iRecLen)

• int FECOM_Transmit(int iPortHnd, UCHAR* cSendProt, int iSendLen)

• int FECOM_Receive(int iPortHnd, UCHAR* cRecProt, int iRecLen)

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 12 (of 36) H80592-20e-ID-B.doc

 5.3. Event flagging for control lines

 Event handling mechanisms can be installed individually for each control lines of any opened port
for the control lines DTR, RTS, CTS, DCD and DSR. As soon as a control line changes its state,
the appropriate signaling is generated. This is a way to notify an application of the event
asynchronous to the program sequence.

 An event handling mechanism must be installed using the FECOM_AddEventHandler function.
You may select from among three various flagging methods: Message to a calling process,
message to a window, or use of a callback function.

 An installed event handling mechanism must be deleted using the FECOM_DelEventHandler
function.

The structure FECOM_EVENT_INIT contains the parameters required for flagging:
typedef struct _FECOM_EVENT_INIT
{

UINT uiUse; // Defines the event (e.g. FECOM_CTS_EVENT)
UINT uiMsg; // Message code for dwThreadID and hwndWnd (e.g. WM_USER_xyz)
UINT uiFlag; // Specifies use of the union (e.g. FECOM_WND_HWND)
union

{
DWORD dwThreadID; // for Thread-ID
HWND hwndWnd; // for Window-Handle
void (*cbFct)(int, int); // for Callback-Function
HANDLE hEvent; // for Event-Handle

}Method;1

} FECOM_EVENT_INIT;

The core element of the structure is the union, which contains either the ID of a process, the
handle of a window, a function pointer or a Windows-API event. The flag form is selected using the
uiFlag parameter. In the uiUse parameter you store an ID for the control line to which you want to
assign the handling method. For message methods you must store the message code in uiMsg.

You may install more than one handling method for a control line. However, each dwThreadID,
hwndWnd, cbFct or hEvent may only be used once per control line and port.

Independent of the event flag you may query the status of any control line using the
FECOM_DoPortCmd function.

1 The name „Method” of the union is only for C programmers. C++ programmers access the union directly
through the structure.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 13 (of 36) H80592-20e-ID-B.doc

5.3.1. FECOM_OpenPort

Function Opens a serial port for communicating with an OBID Reader

Syntax int FECOM_OpenPort(char* cPortNr)

Description The function uses standard parameters to open a serial port and internally stores a port
structure for administering the parameters. For later changes to these parameters you
can use the FECOM_SetPortPara function. Use FECOM_GetPortPara to read out
these parameters. The returned handle iPortHnd identifies the port from the outside.

cPortNr is a null-terminated string with the address of the serial port (e.g. "1" for
COM:1). Values between "1" and "256" are allowed.

The serial port opened by FECOM_OpenPort must (!) be closed using the
FECOM_ClosePort function. Otherwise the memory reserved by the DLL is not freed
up.

Return value If the serial port could be opened without error, a handle (>0) is returned. In case of
error the function returns a value less than 0. The list of error codes can be found in the
Appendix.

Standard-
parameters

The standard parameters for the serial interface are:
Baud: 9600; Frame: 8E1; Timeout: 600ms

Example
...
#include "fecom.h"
...
...
char cPortNr[4];
itoa(1, cPortNr, 10); // Convert Integer to Char
...
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle < 0)
{

// code here for error condition
}
else
{ // Communication through COM:1, if successful received data are in RecBuf

// code here for communication or other
}

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 14 (of 36) H80592-20e-ID-B.doc

5.3.2. FECOM_ClosePort

Function Closes a serial port.

Syntax int FECOM_ClosePort(int iPortHnd)

Description The function closes the port defined in iPortHnd and frees up the reserved memory.

Return value The return value is 0 if the serial port was closed. In case of error the function returns a
value less than 0. The list of error codes can be found in the Appendix.

Example
...
#include "fecom.h"
...
...
int Err;
char cPortNr[4];
...
itoa(1, cPortNr, 10); // Convert Integer to Char
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle < 0)
{

// code here for error condition
}
...
...
...
if(handle > 0)
{ Err = FECOM_ClosePort(handle);

...
}
...
...

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 15 (of 36) H80592-20e-ID-B.doc

5.3.3. FECOM_DetectPort

Function Checks whether a serial port is physically present.

Syntax int FECOM_DetectPort(int iPortNr)

Description The function checks the serial port having the number iPortNr to see whether it is
physically present. If the port is found, a 0 is returned, otherwise
FECOM_ERR_PORT_NOT_FOUND.

This function is ideal for application programs that can offer the user a list of the
possible serial ports.

Return value If the port is found, a 0 is returned, otherwise FECOM_ERR_PORT_NOT_FOUND. In
case of error, the function returns a value less than zero. The error code list can be
found in the Appendix.

Example
...
#include "fecom.h"
...
for(int iPortNr=1; iPortNr<257, ++iPortNr)
{

if(0 == FECOM_DetectPort(iPortNr);
{

// Port is physically present
}

}

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 16 (of 36) H80592-20e-ID-B.doc

5.3.4. FECOM_GetPortList

Function Uses the iNext parameter to get the first or succeeding PortHandle from the internal list
of opened serial ports

Syntax int FECOM_GetPortList(int iNext)

Description Returns a PortHandle from the internal list of PortHandles. If one enters a 0 for iNext,
the first entry in the list is returned. If one enters a PortHandle contained in the list for
iNext, the entry following that PortHandle is gotten and returned. In this way you can
scroll through the list from front to back and call up all entries.

Return value If an entry was found, the PortHandle is returned with the return value. Once the end of
the internal list is reached, i.e. the entered PortHandle has no successor, a 0 is
returned. If no port is opened, FECOM_ERR_EMPTY_LIST is returned.

In case of error the function returns a value less than 0. The list of error codes can be
found in the Appendix.

Example
#include "fecom.h"
...
// Function gets the parameters of all open COM-Ports
void COMList(void)
{ int iNextHnd = FECOM_GetPortList(0); // get the first handle

while(iNextHnd > 0)
{ // here e.g. code for reading out the COM parameters using FECOM_GetPortPara(...)

...
iNextHnd = FECOM_GetPortList(iNextHnd); // get next handle

}
...

// here e.g. code for displaying the list
...
}

Tip When closing all open COM ports it is convenient to use a loop such as in the example
above. Bear in mind however than you cannot get the next in line from a closed port:
...
iNextHnd = FECOM_GetPortList(0); // get the first handle
while(iNextHnd > 0)
{ iCloseHnd = iNextHnd;

iNextHnd = FECOM_GetPortList(iNextHnd); // get next handle only
iError = FECOM_ClosePort(iCloseHnd); // now close port

}

...

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 17 (of 36) H80592-20e-ID-B.doc

5.3.5. FECOM_GetDLLVersion

Function Gets the version number of the DLL/SO

Syntax void FECOM_GetDLLVersion(char* cVersion)

Description The function returns the version number of the DLL/SO.

cVersion is an empty, null-terminated string for returning the version number. The string
should be able to hold at least 256 characters.

In the current version the string is filled with „02.08.03“. Newer versions may provide
additional information.

Return value without

Example
...
#include "fecom.h"
...
...
char cVersion[256];
FECOM_GetDLLVersion(cVersion)

// code here for displaying version number
...
...

5.3.6. FECOM_GetErrorText

Function Gets error text for error code

Syntax int FECOM_GetErrorText(int iErrorCode, char* cErrorText)

Description This function uses cErrorText to send the English error text associated with the
iErrorCode.

The buffer for cErrorText should be able to hold at least 256 characters.

Return value If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

Example
...
#include "fecom.h"
#include "fecomdef.h"
...
...
char cErrorText[256];
...

int iBack = FECOM_GetErrorText(FECOM_ERR_EMPTY_LIST, cErrorText)
// code here for displaying the text

...

...

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 18 (of 36) H80592-20e-ID-B.doc

5.3.7. FECOM_GetLastError

Function Gets the last error code and transfers error text.

Syntax int FECOM_GetLastError(int iPortHnd , int* iErrorCode, char* cErrorText)

Description The function uses iErrorCode to transfer the last error code of the port selected by
iPortHnd and uses cErrorText to transfer the associated English-language error text.

The buffer for cErrorText should to able to hold at least 256 characters.

Return value If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

Example
...
#include "fecom.h"
...
...
char cErrorText[256];
int iErrorCode = 0;
...

int iBack = FECOM_GetLastError(iPortHnd, &iErrorCode, cErrorText)
// code here for displaying the text

...

...

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 19 (of 36) H80592-20e-ID-B.doc

5.3.8. FECOM_GetPortHnd

Function Gets the port handle of a serial port opened with FECOM.DLL.

Syntax int FECOM_GetPortHnd(char* cPortNr)

Description As a rule you set the COM port number in a program, whereas internally the program
uses a handle. This function can be used to easily get the PortHandle of an already
open serial port.

This function is an „inverse" of FECOM_GetPortPara(iPortHnd, "PortNr", Value),
which gets the number of the COM port for the PortHandle.

cPortNr is a null-terminated string with the address of the serial port (e.g. "1" for
COM:1). Values between 1 and 256 are allowed.

Return value If the serial port for the transmitted cPortNr is found, the PortHandle (>0) is returned. If
the searched for port number cPortNr could not be found in the port list, a 0 is returned.
In case of error the function returns a value less than 0. The list of error codes can be
found in the Appendix.

Example
...
#include "fecom.h"
...
char cPortNr[4];
...
itoa(1, cPortNr, 10); // Convert Integer to Char
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle < 0)
{

// code here for error condition
}
else
{ // handle is gotten again using PortNr

handle = FECOM_GetPortHnd(cPortNr);
}

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 20 (of 36) H80592-20e-ID-B.doc

5.3.9. FECOM_GetPortPara

Function Gets a parameter from the serial port specified in iPortHnd.

Syntax Int FECOM_GetPortPara(int iPortHnd, char* cPara, char* cValue)

Description The function gets the current value of a parameter.

cPara is a null-terminated string with the parameter code.

cValue is an empty, null-terminated string for returning the parameter value. The string
should be able to hold at least 128 characters.

Parameter
codes

The parameter codes are: Baud, Frame, Timeout, ErrCode, ErrStr, TxTimeControl,
TxDelayTime, CharTimeoutMpy, Performance, Language and PortNr. The latter returns
the physical number of the serial port.

The parameter Language sets the language inside the DLL and is a global parameter.
This means, that iPortHnd is insignificant and should be set to 0.

Return value If there is no error the function returns the value 0 and in case of error a value less than
0. The list of error codes can be found in the Appendix.

Cross-reference For additional information see: 6.2. List of Parameter Codes.

Example
...
#include "fecom.h"
...
...
char cValue[128];
...
if(!FECOM_GetPortPara(handle, "Baud", cValue))

{
// code here for displaying the COM parameter
...

}
...
...
}

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 21 (of 36) H80592-20e-ID-B.doc

5.3.10. FECOM_SetPortPara

Function Sets a serial port parameter to a new value.

Syntax int FECOM_SetPortPara(int iPortHnd, char* cPara, char* cValue)

Description The function transfers a new parameter to the serial port specified in iPortHnd. This
reinitializes the serial port in question and deletes the send and receive buffers.

cPara is a null-terminated string with the parameter code.

cValue is a null-terminated string with the new parameter value.

Parameter code Value range Default value Units

Baud 300...115200 9600 bit/s

Frame 7N1, 7E1, 7O1,
7N2, 7E2, 7O2,
8N1, 8E1, 8O1

8E1

Timeout 0...99999 600 ms

TxTimeControl 0, 1 1 -

TxDelayTime 0...999 5 ms

CharTimeoutMpy 1...99 1 -

Performance 0, 1 1 -

Language 7, 9 9 -

UseOBID (only Linux) 0, 1 0 -

Return value If the serial port was able to be successfully initialized with the new parameter value, a
0 is returned. In case of error the function returns a value less than 0. The list of error
codes can be found in the Appendix.

Cross-reference For additional information see: 6.2. List of Parameter Codes.

Example
…
#include “fecom.h”
…
…
int Err;
char cPortNr[4];
…
itoa(1, cPortNr, 10); // Convert Integer to Char
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle > 0)
{ Err = FECOM_SetPortPara(handle, “Baud”, “4800”);

…
}
…
…

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 22 (of 36) H80592-20e-ID-B.doc

5.3.11. FECOM_DoPortCmd

Function Executes a command on a serial port.

Syntax int FECOM_DoPortCmd(int iPortHnd, char* cCmd, char* cValue)

Description The function executes a command at the serial port named in iPortHnd.

CCmd is a null-terminated string with the command code.

CValue is a null-terminated string with the new parameter value or for the return value
(e.g., status of a control line).

If a return value is expected in cValue, the buffer should be able to hold at least 16
characters.

Command Function cValue

FlushInQ Flushes input buffer not used

FlushOutQ Flushes output buffer not used

SetDTR Sets DRT line „ON“ or „OFF“ „ON“ or „OFF“

SetRTS Sets RTS line „ON“ or „OFF“ „ON“ or „OFF“

GetDTR Gets DTR-Status Status {„ON“, „OFF“}

GetRTS Gets RTS-Status Status {„ON“, „OFF“}

GetCTS Gets CTS-Status Status {„ON“, „OFF“}

GetDCD Gets DCD-Status Status {„ON“, „OFF“}

GetDSR Gets DSR-Status Status {„ON“, „OFF“}

Return value If the command was executed without error, a 0 is returned. In case of error the function
returns a value less than 0.

1. Example
#include “fecom.h”
…
…
int Err;
char cPortNr[4];
…
itoa(1, cPortNr, 10); // Convert Integer to Char
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle > 0)
{ Err = FECOM_DoPortCmd(handle, “FlushInQ”, “”);

…
}
…

2. Example
#include “fecom.h”
…
int Err;
char cValue[16];
…
Err = FECOM_DoPortCmd(handle, “GetCTS”, cValue);
if(strcmp(cValue, „ON“)==0) // Compares strings
{

// CTS is set
}
…

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 23 (of 36) H80592-20e-ID-B.doc

5.3.12. FECOM_AddEventHandler

Function Installs an event handling mechanism

Syntax int FECOM_AddEventHandler(int iPortHnd, FECOM_EVENT_INIT* pInit)

Description The function installs one of four possible event handling methods. This method is used
when the state of the control line for which the method was installed changes. This
allows asynchronous response to events in an application program.

The event handling method is established only for the port identified by iPortHnd. This
means that if necessary you may have to repeat this installation for each opened port.

1st Method: Message to thread (not for Linux)
This method is used for exchanging messages between Threads1. The thread uses the
API function GetCurrentThreadID() to get the thread identifier and transfers this as the
parameter dwThreadID in the FECOM_EVEN_INIT structure.
The thread must provide a message handling function for receiving the message that
was sent by FECOM with the API function PostThreadMessage(..). The message code
is freely selectable.
The FECOM_EVENT_INIT structure is filled as follows:

uiUse = FECOM_xyz_EVENT // see Defines FECOM.H
uiMsg = WM_USER + … // freely selectable, but higher than WM_USER2

uiFlag = FECOM_THREAD_ID
dwThreadID = GetCurrentThreadID()

The MessageMap function in the application is given in the 1st parameter (WPARAM)
the port number and in the 2nd parameter (LPARAM) the status of the control line (0 =
not set; 1 = set).

2nd Method: Message to window (not for Linux)

This method is used when the message needs to be sent directly to a window. The
corresponding window uses the API function GetWindow(..)3 to get the handle and
transfer it as the parameter hwndWnd in the FECOM_EVENT_INIT structure. The
window must provide a message handling function for receiving the message that was
sent by FECOM with the API function PostThreadMessage(..). The message code is
freely selectable.
The FECOM_EVENT_INIT structure is filled as follows:

uiUse = FECOM_xyz_EVENT // see Defines FECOM.H
uiMsg = WM_USER + … // freely selectable, but higher than WM_USER2

uiFlag = FECOM_WND_HWND
hwndWnd = GetWindow(…)

The MessageMap function in the application is given in the 1st parameter (WPARAM)
the port number and in the 2nd parameter (LPARAM) the status of the control line (0 =
not set; 1 = set).

1 Parallel execution path independent of the application program. The application program itself is a thread.
2 See Windows documentation for the SDK platform
3 When using MFC CWnd you can also use the GetSafeHwnd() method.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 24 (of 36) H80592-20e-ID-B.doc

3rd method: Invoking a callback function

In the callback method a function pointer for an event is installed. When the status of an
appropriate control line changes, FECOM invokes the function. The content of the
function can be freely determined. The transfer parameters are however specified: In
the first parameter the port number is transferred and in the 2nd parameter the status of
the control line (0 = not set, 1 = set).
Die FECOM_EVENT_INIT structure is filled as follows:

uiUse = FECOM_xyz_EVENT // see Defines FECOM.H
uiMsg not needed
uiFlag = FECOM_EVENT
cbFct = (void*)&YourFunctionName1

4th method: Setting an event (not for Linux)

For the event method an event handle is installed for an event. When the state of an
affected control line changes, the event is set by FECOM using the API-Function
SetEvent(…). On the application side you wait for the event with the API-Function
WaitForSingleObject(…). Since you cannot distinguish how the state of the affected
control line changed, you must use the function FECOM_DoPortCmd to query the
state. The set event must be reset again by the application program using the API-
Function ResetEvent(…).
The FECOM_EVENT_INIT structure is filled in as follows:

uiUse = FECOM_xyz_EVENT // see Defines FECOM.H
uiMsg is not needed
uiFlag = FECOM_EVENT
hEvent = CreateEvent(…);

An installed event handling method is deleted using the function
FECOM_DelEventHandler.

When closing a port, all the event handling methods stored for this port are lost.

Cross-reference For additional information see: 5.3. Event flagging for control lines, 5.3.13.
FECOM_DelEventHandler, 6.3. List of constants for the FECOM_EVENT_INIT
structure.

Return value If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

1 The function has the prototype: void YourFunctionName(int, int)

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 25 (of 36) H80592-20e-ID-B.doc

5.3.13. FECOM_DelEventHandler

Function Deletes an event handling mechanism

Syntax int FECOM_DelEventHandler(int iPortHnd, FECOM_EVENT_INIT* pInit)

Description The function deletes an event handling mechanism which was previously installed using
FECOM_AddEventHandler. The FECOM_EVENT_INIT structure is where you specify
in detail the event handling mechanism to be deleted.

Deleting the 1st method: Message to Thread (not for Linux)
The FECOM_EVENT_INIT structure is filled as follows:

uiUse = FECOM_xyz_EVENT // see Defines in FECOM.H
uiMsg not needed
uiFlag = FECOM_THREAD_ID
dwThreadID = GetCurrentThreadID()

Deleting the 2nd method: Message to Window (not for Linux)
Die FECOM_EVENT_INIT structure is filled as follows:

uiUse = FECOM_xyz_EVENT // see Defines in FECOM.H
uiMsg not needed
uiFlag = FECOM_WND_HWND
hwndWnd = GetWindow(…)

Deleting the 3rd method: Invoking a callback function
The FECOM_EVENT_INIT structure is filled as follows:

uiUse = FECOM_xyz_EVENT // see Defines FECOM.H
uiMsg not needed
uiFlag = FECOM_CALLBACK
cbFct = (void*)&YourFunctionName

Deleting the 4th method: Setting an event (not for Linux)
The FECOM_EVENT_INIT structure is filled as follows:

uiUse = FECOM_xyz_EVENT // see Defines FECOM.H
uiMsg not needed
uiFlag = FECOM_EVENT
hEvent = IhrEventHandle;

Cross-reference For additional information see: 5.3. Event flagging for control lines, 5.3.12.
FECOM_AddEventHandler, 6.3. List of constants for the FECOM_EVENT_INIT
structure.

Return value If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 26 (of 36) H80592-20e-ID-B.doc

5.3.14. FECOM_Transceive

Function Function for communication (Transmit and Receive) through the port.

Syntax int FECOM_Transceive(int iPortHnd, UCHAR* cSendProt, int iSendLen, UCHAR*
cRecProt, int iRecLen)

Description The function sends the data contained in cSendProt through the serial port to an
attached device and stores the received data in cRecProt.

The number of characters in cSendProt must be transferred in the iSendLen parameter.

The iRecLen parameter must be used to indicate the maximum length of the cRecProt
buffer. If the number of characters received exceeds the value transferred in iRecLen,
the function is ended with an error. The characters received up to the point of the
cancel are stored in cRecProt.

Prior to communication the transmit and receive buffers are deleted.

The parameter TxDelayTime1 can be used to delay the send protocol until the time
TxDelayTime has elapsed since the last receive protocol.

Return value If there are no errors, the function returns the length of the receive protocol, and in case
of error it returns a value less than 0. The list of error codes can be found in the
Appendix.

Example
#include “fecom.h”
...
int iSendLen;
int iRecProtLen;
char cPortNr[4];
…
itoa(1, cPortNr, 10); // Convert Integer to Char
UCHAR cSendBuf[256]; // Adjust buffer size to transmit data if needed
UCHAR cRecBuf[256]; // Adjust buffer size to receive data if needed
…
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle < 0)
{

// code here for error condition
}
else
{

// the transmit protocol is gotten for example with a function and stored in SendBuf
iSendLen = GetSendProtocol(cSendBuf);
// Communication through COM:1, if successful, the receive data are located in RecBuf
iRecProtLen = FECOM_Transceive(handle, cSendBuf, iSendLen, cRecBuf, 256);
if(cRecProtLen < 0)
{

// Communication error
}

}

1 See Section 5.3.10. FECOM_SetPortPara

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 27 (of 36) H80592-20e-ID-B.doc

5.3.15. FECOM_Transmit

Function Function for sending a protocol through the port.

Syntax int FECOM_Transmit(int iPortHnd, UCHAR* cSendProt, int iSendLen)

Description The function sends the data contained in cSendProt through the serial port to an
attached device and does not wait for a reply protocol.

The number of characters in cSendProt must be indicated in the iSendLen parameter.

Before the protocol is sent the transmit buffer is deleted. Any characters which are still
waiting for the output are lost.

The function does not revert until all the characters have been output through the port.

Return value In case of error the Function returns 0, or in case of error a value less than 0. The list of
error codes can be found in the Appendix.

Example
…
#include “fecom.h”
...
...
int iErr;
int iSendLen;
char cPortNr[4];
…
itoa(1, cPortNr, 10); // Convert Integer to Char
UCHAR cSendBuf[256]; // Buffer size may need to be adjusted to the send data
…
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle < 0)
{

// code here for error condition
}
else
{ // the transmit protocol is gotten for example with a function and stored in SendBuf

iSendLen = GetSendProtocol(cSendBuf);
// Communication through COM:1
iErr = FECOM_Transmit(handle, cSendBuf, iSendLen);
if(iErr < 0)
{

// Communication error
}

}

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 28 (of 36) H80592-20e-ID-B.doc

5.3.16. FECOM_Receive

Function Function for receiving a protocol through the port.

Syntax int FECOM_Receive(int iPortHnd, UCHAR* cRecProt, int iRecLen)

Description The function expects data received through the serial port within the Timeout time (see
6.2. List of Parameter Codes), reads them out and stores them in the receive buffer
cRecProt.

The iRecLen parameter must be used to indicate the maximum length of the cRecProt
buffer. If the number of characters received exceeds the value transferred in iRecLen,
the function is ended with an error. The characters received up to the point of the
cancel are stored in cRecProt.

The function does not delete the receive buffer. This ensures that characters which
arrived previously are not lost.

Return value If there is not error the function returns the length of the receive protocol, or in case of
error a value less than 0. The list of error codes can be found in the Appendix.

Example
…
#include “fecom.h”
#include “fecomdef.h”
…
…
int iRecProtLen;
char cPortNr[4];
…
itoa(1, cPortNr, 10); // Convert Integer to Char
UCHAR cRecBuf[256]; // Buffer size may need to be adjusted to the receive data
…
int handle = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(handle < 0)
{

// code here for error condition
}
else
{ // Communication through COM:1, if successful the receive data will be located in RecBuf

iRecProtLen = FECOM_Receive(handle, cRecBuf, 256);
if(iRecProtLen < 0)
{

// Communication error or buffer overflow
if(iRecProtLen == FECOM_ERR_OVL_RECBUF)
{ // Buffer overflow: Data in RecBuf are valid receive data

…
}

}
}

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 29 (of 36) H80592-20e-ID-B.doc

6. Appendix

6.1. Error codes

Error constants Value Description

FECOM_ERR_NEWPORT_FAILURE -1000 Error in generating a new port object. Lack
of memory may be the cause.

FECOM_ERR_EMPTY_LIST -1001 Port handle list is empty (no port objects
stored)

FECOM_ERR_POINTER_IS_NULL -1002 A pointer is null, thus invalid

FECOM_ERR_NO_MEMORY -1003 Lack of memory

FECOM_ERR_UNSUPPORTED_HARDWARE -1004 Unsupported hardware. The error is
reported whenever the hardware used does
not support a counter with high resolution

FECOM_ERR_PORT_NOT_FOUND -1005 Return value of FECOM_DetectPort, if the
transferred port is not existent.

FECOM_ERR_NO_PORT -1010 Port could not be opened

FECOM_ERR_NO_CONNECT -1011 Timeout when opening the port. Port was
not opened

FECOM_ERR_LINK_ID -1012 The parameter cPortNr in the FECOM
OpenPort function is defective

FECOM_ERR_PORT_IS_OPEN -1013 The port is already open

FECOM_ERR_UNKNOWN_HND -1020 The transferred port handle is unknown

FECOM_ERR_HND_IS_NULL -1021 The transferred port handle is 0

FECOM_ERR_HND_IS_NEGATIVE -1022 The transferred port handle is negative

FECOM_ERR_NO_HND_FOUND -1023 No port handle found in the port handle list

FECOM_ERR_TIMEOUT -1030 Timeout when reading from the port

FECOM_ERR_NO_SENDPROTOCOL -1031 No send protocol transferred

FECOM_ERR_RECEIVE_PROCESS -1032 Error in receive process

FECOM_ERR_INIT_COMM_PROCESS -1033 Error in initializing the port

FECOM_ERR_FLUSH_INPUT_BUFFER -1034 Error in flushing the input buffer

FECOM_ERR_FLUSH_OUTPUT_BUFFER -1035 Error in flushing the output buffer

FECOM_ERR_CHANGE_PORT_PARA -1036 Error in changing a port parameter

FECOM_ERR_TRANSMIT_PROCESS -1037 Error in the transmit process

FECOM_ERR_RECEIVE_NOISE_DATA -1038 Checksum error and/or parity error or not
identifiable data stream

FECOM_ERR_UNKNOWN_PARAMETER -1050 Transfer parameter unknown

FECOM_ERR_PARAMETER_OUT_OF_RANGE -1051 Transfer parameter too large or too small

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 30 (of 36) H80592-20e-ID-B.doc

Error constants Value Description

FECOM_ERR_ODD_PARAMETERSTRING -1052 An unsupported option was invoked by a
transfer parameter

FECOM_ERR_PORTNR_OUT_OF_RANGE -1053 The transferred port number is not within
the allowed range of 1 to 256

FECOM_ERR_UNKNOWN_ERRORCODE -1054 Unknown error code

FECOM_ERR_OVL_RECBUF -1070 Receive buffer overflow

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 31 (of 36) H80592-20e-ID-B.doc

6.2. List of Parameter Codes

Parameter code Value range Default Units Description

Baud 300…115200 9600 bit/s Baud rate for the port

Frame 7N1, 7E1, 7°1,
7N2, 7E2, 7°2,
 8N1, 8E1, 8°1

8E1 - Character frame (data bits, parity, stop bits)

Timeout 0…99999 600 ms Maximum wait time for receive protocol

PortNr 1…256 0 - Number of the COM port

TxTimeControl 0, 1 1 - When set (1), there is an internal delay before the next
send protocol is sent at least until TxDelayTime (mx)
has elapsed since the last receive protocol.

If not set (0), the send protocol is always output as soon
as possible.

TxDelayTime 0…999 5 ms Minimum time span between the last receive and the
next send protocol. Only applies if TxTimeControl=1

CharTimeoutMpy 1…99 1 - Since Version 2.00.00 the character timeout is
calculated internally. The character timeout specifies
after how much time after receipt of the last character
the receive process is ended. With some PCs there may
be repeated protocol length errors because the wait time
is too short. In this case you may use this parameter to
multiply the wait time.

Performance 0, 1 1 - Determines the performance of the internal
communication process. In normal case, Performance is
set to 1. For maximum of communication power,
Performance is set to 0. But in this case, other threads
and applications will be delayed.

Language 7 - german
9 - english

9 - Sets the language for text resources

UseOBID 0, 1 0 - only for Linux: activates internally a specialized receive
algorithm adopted to OBID protocol frames to increase
the communication performance

Instead of the following parameter codes the function FECOM_GetLastError should be used

ErrCode - - - Returns the last error code

ErrStr - - - Returns text for the last error

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 32 (of 36) H80592-20e-ID-B.doc

Obsolete parameters

CharTimeout 0…99999 20 ms Maximum wait time for next character in the receive
protocol

SleepTime 0...999 0 ms Wait time after the send protocol and before reading the
receive protocol1

PortOpenTimeout 0...99999 5000 ms Maximum wait time for opening a COM port

1 See 5.3.14. FECOM_Transceive

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 33 (of 36) H80592-20e-ID-B.doc

6.3. List of constants for the FECOM_EVENT_INIT structure

The constant definitions are contained in the file FECOM.H, FECOM.BAS or FECOM.PAS.

Constant Value Use Description

FECOM_THREAD_ID 1 uiFlag Event flag with thread message

FECOM_WND_HWND 2 uiFlag Event flag with window message

FECOM_CALLBACK 3 uiFlag Event flag with callback function

FECOM_EVENT 4 uiFlag Event flag with Windows API event

FECOM_CTS_EVENT 1 uiUse Flag for CTS change

FECOM_DCD_EVENT 2 uiUse Flag for DCD change

FECOM_DSR_EVENT 3 uiUse Flag for DSR change

FECOM_RTS_EVENT 4 uiUse Flag for RTS change

FECOM_DTR_EVENT 5 uiUse Flag for DTR change

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 34 (of 36) H80592-20e-ID-B.doc

6.4. Revision history

V2.08.02

• Windows: Improved thread security while opening and closing of ports.

• Linux: Improved communication performance when using of specialized receive algorithm
adopted to OBID protocol frames by enabling with the parameter UseOBID.

• Increase of the upper range of the parameter CharTimeoutMpy to 99.

V2.08.00

• The Linux library is compiled with GCC 3.3.3 under SuSE Linux 9.1

V2.07.00

• New baudrates 230400 and 460800.

V2.06.08

• Fixing of small bugs.

V2.06.06

• First Linux Release (SuSE Linux 8.2, GNU Compiler Collection V23.3-23, glibc V2.3.2-6)

V2.06.00

• Integration of a Java interface for the OBID® Java library

• new error code: -1006

V2.05.00

• The new version is 100% downward compatible with the previous version.

• First Windows CE Version

V2.04.04

• The new version is 100% downward compatible with the previous version.

• Move of all constants from the file fecomdef.h to the file fecom.h. The file fecomdef.h is now
dispensable.

• The function FECOM_GetPortHnd returns for port number 256 a port handle.

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 35 (of 36) H80592-20e-ID-B.doc

V2.04.00

• The new version is 100% downward compatible with the previous version.

• New function: FECOM_DetectPort.

V2.03.00

• The new version is 100% downward compatible with the previous version.

• internal version.

V2.02.00

• The new version is 100% downward compatible with the previous version.

• New parameters: Performance and Language

• The problem with the port number 256 is removed

V2.00.01

• The new version is 100% backward compatible with the previous version.

• New parameter CharTimeoutMpy

V2.00.00

• The new version is 100% backward compatible with the previous version.

• FECOM is no longer dependent on other files.

• The performance of the receive routine in the DLL was significantly increased: The functions
FECOM_Receive and FECOM_Transceive now revert with a minimum delay after receipt of
the protocol.

• New control parameters: TxTimeControl and TxDelayTime for targeted delay of transmission
protocols.

• The parameters CharTimeout, PortOpenTimeout and SleepTime are obsolete.

• It is now possible to open ports having a number greater than 9.

• Event handling for events has been expanded.

• FECOM can by dynamically linked under C/C++. The function declarations are found in the
header file FECOM.H.

• Renaming of the error codes:
FECOM_ERR_READ_PROTOCOL in FECOM_ERR_RECEIVE_PROCESS

OBID® Manual ID FECOM V2.08.04

FEIG ELECTRONIC GmbH Page 36 (of 36) H80592-20e-ID-B.doc

V1.01.00

• The function FECOM_DoPortCmd permits setting and querying of the following control lines:

Control line Set Query status

DTR X X

RTS X X

CTS - X

DCD - X

DSR - X

• In addition you can link the status change of a control line with a flag. For more detailed
information, see Section 5.3. Event flagging for control lines.

• The function FECOM_GetLastError returns the last error code and an error text.

• The function FECOM_GetErrorText returns the error text for any desired error code.

V1.00.09

• New parameters for FECOM_GetPortPara: ERRCODE, ERRSTR

Versions 1.00.07 and 1.00.08 were internal preliminary versions

V1.00.06

• Version 1.00.06 was modified internally only with respect to better performance and stability.

• Version 1.00.06 is in all functions invoke-compatible with the previous versions 1.00.02 –
1.00.05

• Version 1.00.06 is no longer invoke-compatible with Version 1.00.01 in the following functions:

1. FECOM_OpenPort
2. FECOM_GetPortHnd

 Both functions now expect a pointer to a string, whereas the previous version expects a byte
value!

	Licensing agreement for use of the software
	Contents:
	Introduction
	Installation
	32-Bit Windows 2000/XP/Vista
	Windows CE
	32-Bit Linux

	Incorporating into the application program
	Changes since the previous version
	Programming Interface
	Overview
	List of functions
	Event flagging for control lines
	FECOM_OpenPort
	FECOM_ClosePort
	FECOM_DetectPort
	FECOM_GetPortList
	FECOM_GetDLLVersion
	FECOM_GetErrorText
	FECOM_GetLastError
	FECOM_GetPortHnd
	FECOM_GetPortPara
	FECOM_SetPortPara
	FECOM_DoPortCmd
	FECOM_AddEventHandler
	FECOM_DelEventHandler
	FECOM_Transceive
	FECOM_Transmit
	FECOM_Receive

	Appendix
	Error codes
	List of Parameter Codes
	List of constants for the FECOM_EVENT_INIT structure
	Revision history
	V2.08.02
	V2.08.00
	V2.07.00
	V2.06.08
	V2.06.06
	V2.06.00
	V2.05.00
	V2.04.04
	V2.04.00
	V2.03.00
	V2.02.00
	V2.00.01
	V2.00.00
	V1.01.00
	V1.00.09
	Versions 1.00.07 and 1.00.08 were internal preliminary versi
	V1.00.06

