

MANUAL

final
public (B)
2012-08-21
H9391-41e-ID-B.doc

ID FEISC
Version 7.01.04

Software-Support for

OBID i-scan® and OBID® classic-pro

Operating System Target Notes

32-Bit 64-Bit

Windows XP X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Windows Vista / 7 X X

Windows CE X -

Linux X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 2 (of 123) H9391-41e-ID-B.doc

Note

 Copyright 1999-2012 by FEIG ELECTRONIC GmbH
 Lange Straße 4
 D-35781 Weilburg-Waldhausen

Germany
 Tel.: +49 6471 3109-0
 http://www.feig.de

The indications made in these mounting instructions may be altered without previous notice. With the edition of these
instructions, all previous editions become void.

Copying of this document, and giving it to others and the use or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the
payment of damages. All rights are reserved in the event of the grant of a patent or the
registration of a utility model or design.

Composition of the information given in these mounting instructions has been done to the best of our knowledge. FEIG
ELECTRONIC GmbH does not guarantee the correctness and completeness of the details given and may not be held
liable for damages ensuing from incorrect installation.

Since, despite all our efforts, errors may not be completely avoided, we are always grateful for your useful tips.

FEIG ELECTRONIC GmbH assumes no responsibility for the use of any information contained in this manual and
makes no representation that they free of patent infringement. FEIG ELECTRONIC GmbH does not convey any license
under its patent rights nor the rights of others.

The installation-information recommended here relate to ideal outside conditions. FEIG ELECTRONIC GmbH does not
guarantee the failure-free function of the OBID® -system in outside environment.

OBID® and OBID i-scan® are registered trademarks of FEIG ELECTRONIC GmbH.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries

Linux® is a registered Trademark of Linus Torvalds.

Apple, Mac, Mac OS, OS X, Cocoa and Xcode are trademarks of Apple Inc., registered in the U.S. and other countries.

Electronic Product Code (TM) is a Trademark of EPCglobal Inc.

I-CODE® and Mifare® are registered Trademarks of Philips Electronics N.V.

Tag-it (TM) is a registered Trademark of Texas Instruments Inc.

http://www.feig.de/

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 3 (of 123) H9391-41e-ID-B.doc

Licensing agreement for use of the software

This is an agreement between you and FEIG ELECTRONIC GmbH (hereafter "FEIG") for use of the ID FEISC program library and the
present documentation, hereafter called licensing material. By installing and using the software you agree to all terms and conditions of
this agreement without exception and without limitation. If you are not or not completely in agreement with the terms and conditions,
you may not install the licensing material or use it in any way. This licensing material remains the property of FEIG ELECTRONIC
GmbH and is protected by international copyright.

§1 Object and scope of the agreement

1. FEIG grants you the right to install the licensing material provided and to use it under the following conditions.

2. You may install all components of the licensing material on a hard disk or other storage medium. The installation and use may
also be done on a network fileserver. You may create backup copies of the licensing material.

3. FEIG grants you the right to use the documented program library for developing your own application programs or program
libraries, and you may sell the runtime file FEISC.DLL, FEISCCE.DLL, LIBFEISC.x.y.z.DYLIB1 or LIBFEISC.SO.x.y.z1 without
licensing fees under the stipulation that these application programs or program libraries are used to control devices and/or
systems which are developed and/or sold by FEIG.

4. This license material can depend on third-party software. In case of the use of this third-party software the listed license
agreements in chapter Third-party Licensing agreements have to be applied.

§2. Protection of the licensing material

1. The licensing material is the intellectual property of FEIG and its suppliers. It is protected in accordance with copyright,
international agreements and relevant national statutes where it is used. The structure, organization and code of the software are
a valuable business secret and confidential information of FEIG and its suppliers.

2. You agree not to change, modify, translate, reverse develop, decompile, disassemble the program library or the documentation or
in any way attempt to discover the source code of this software.

3. To the extent that FEIG has applied protection marks, such as copyright marks and other legal restrictions in the licensing
material, you agree to keep these unchanged and to use them unchanged in all complete or partial copies which you make.

4. The transmission of licensing material in part or in full is prohibited unless there is an explicit agreement to the contrary between
you and FEIG. Application programs or program libraries which are created and sold in accordance with §1 Par. 3 of this
Agreement are excepted.

§3 Warranty and liability limitations

1. You agree with FEIG that is not possible to develop EDP programs such that they are error-free for all application conditions. FEIG
explicitly makes you aware that the installation of a new program can affect already existing software, including such software that
does not run at the same time as the new software. FEIG assumes no liability for direct or indirect damages, for consequential
damages or special damages, including lost profits or lost savings. If you want to ensure that no already installed program will be
affected, you should not install the present software.

2. FEIG explicitly notes that this software makes it possible for irreversible settings and adaptations to be made on devices which
could destroy these devices or render them unusable. FEIG assumes no liability for such actions, regardless of whether they are
carried out intentionally or unintentionally.

3. FEIG provides the software „as is“ and without any warranty. FEIG cannot guarantee the performance or the results you obtain
from using the software. FEIG assumes no liability or guarantee that the protection rights of third parties are not violated, nor that
the software is suitable for a particular purpose.

4. FEIG call explicit attention the licensed material is not designed with components and testing for a level of reliability suitable for
use in or in connection with surgical implants or as critical components in any life support systems whose failure to perform can
reasonably be expected to cause significant injury to a human.
To avoid damage, injury, or death, the user or application designer must take reasonably prudent steps to protect against system
failures.

1 x.y.z represents the actual version number

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 4 (of 123) H9391-41e-ID-B.doc

§4 Concluding provisions

1. This Agreement contains the complete licensing terms and conditions and supercedes any prior agreements and terms. Changes
and additions must be made in writing.

2. If any provision this agreement is declared to be void, or if for any reason is declared to be invalid or of no effect, the remaining
provisions shall be in no manner affected thereby but shall remain in full force and effect. Both parties agree to replace the invalid
provision with one which comes closest to its original intention.

3. This agreement is subject to the laws of the Federal Republic of Germany. Place of jurisdiction is Frankfurt a. M.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 5 (of 123) H9391-41e-ID-B.doc

Third-party Licensing agreements

Licensing agreement of openSSL organization

The following license issues are to be appied in the case that encrypted data transmission is used.

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and
the original SSLeay license apply to the toolkit. See below for the actual license texts. Actually
both licenses are BSD-style Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

==
Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their
names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are
aheared to. The following conditions apply to all code found in this distribution, be it the RC4,
RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this

mailto:eay@cryptsoft.com

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 6 (of 123) H9391-41e-ID-B.doc

distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed.
If this package is used in a product, Eric Young should be given attribution as the author of the
parts of the library used.
This can be in the form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement:
"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library being used are not
cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory
(application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code
cannot be changed. i.e. this code cannot simply be copied and put under another distribution
licence [including the GNU Public Licence.]

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 7 (of 123) H9391-41e-ID-B.doc

Contents:

Licensing agreement for use of the software ... 3

Third-party Licensing agreements ... 5

Licensing agreement of openSSL organization .. 5

Contents: .. 7

1. Introduction .. 11

1.1. Shipment ... 13

1.1.1. Windows XP / Vista / 7 .. 13
1.1.2. Windows CE .. 13
1.1.3. Linux .. 13
1.1.4. Mac OS X .. 13

2. Changes since the previous version ... 14

3. Installation .. 15

3.1. 32- and 64-Bit Windows XP/Vista/7 ... 15

3.2. Windows CE ... 16

3.3. 32- and 64-Bit Linux ... 17

3.4. 64-Bit Mac OS X .. 18

4. Including into the application program ... 19

4.1. Supported Development Tools .. 19

4.2. Incorporating into Visual Studio ... 19

4.3. Incorporating into Xcode ... 19

5. Programming Interface ... 20

5.1. Overview ... 20

5.2. Thread security... 22

5.3. Parameter transfer ... 23

5.4. Asynchronous tasks for relieving the load on applications ... 24

5.5. Event flagging to applications .. 29

5.6. Secured data transmission with encryption .. 30

5.6.1. Overview .. 30
5.6.2. Feedback of error cases .. 30

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 8 (of 123) H9391-41e-ID-B.doc

5.6.3. Notes for Programmers ... 31

5.7. List of functions ... 32

5.7.1. Which function for which OBID i-scan® and OBID® classic-pro Reader.................... 37
5.7.2. FEISC_NewReader ... 39
5.7.3. FEISC_DeleteReader .. 41
5.7.4. FEISC_GetReaderList ... 42
5.7.5. FEISC_GetDLLVersion .. 43
5.7.6. FEISC_GetErrorText.. 43
5.7.7. FEISC_GetStatusText ... 44
5.7.8. FEISC_GetReaderPara ... 45
5.7.9. FEISC_SetReaderPara .. 46
5.7.10. FEISC_AddEventHandler .. 47
5.7.11. FEISC_DelEventHandler ... 50
5.7.12. FEISC_StartAsyncTask ... 51
5.7.13. FEISC_CancelAsyncTask .. 53
5.7.14. FEISC_TriggerAsyncTask ... 54
5.7.15. FEISC_BuildSendProtocol ... 55
5.7.16. FEISC_BuildRecProtocol ... 56
5.7.17. FEISC_SplitSendProtocol .. 57
5.7.18. FEISC_SplitRecProtocol .. 58
5.7.19. FEISC_SendTransparent ... 59
5.7.20. FEISC_Transmit .. 60
5.7.21. FEISC_Receive ... 61
5.7.22. FEISC_GetLastSendProt ... 62
5.7.23. FEISC_GetLastRecProt ... 62
5.7.24. FEISC_GetLastState ... 63
5.7.25. FEISC_GetLastRecProtLen ... 63
5.7.26. FEISC_GetLastError .. 64
5.7.27. FEISC_0x18_Destroy .. 65
5.7.28. FEISC_0x1A_Halt .. 66
5.7.29. FEISC_0x1B_ResetQuietBit .. 66
5.7.30. FEISC_0x1C_EASRequest .. 66
5.7.31. FEISC_0x1F_MAXDataExchange.. 67
5.7.32. FEISC_0x21_ReadBuffer... 68
5.7.33. FEISC_0x22_ReadBuffer... 69
5.7.34. FEISC_0x31_ReadDataBufferInfo ... 70
5.7.35. FEISC_0x32_ClearDataBuffer ... 70
5.7.36. FEISC_0x33_InitBuffer .. 71
5.7.37. FEISC_0x34_ForceNotifyTrigger ... 71
5.7.38. FEISC_0x52_GetBaud... 72
5.7.39. FEISC_0x55_StartFlashLoader ... 72
5.7.40. FEISC_0x55_StartFlashLoaderEx ... 72
5.7.41. FEISC_0x63_CPUReset .. 73
5.7.42. FEISC_0x64_SystemReset ... 73
5.7.43. FEISC_0x65_SoftVersion .. 74
5.7.44. FEISC_0x66_ReaderInfo ... 74

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 9 (of 123) H9391-41e-ID-B.doc

5.7.45. FEISC_0x69_RFReset ... 75
5.7.46. FEISC_0x6A_RFOnOff .. 75
5.7.47. FEISC_0x6B_CentralizedRFSync .. 76
5.7.48. FEISC_0x6C_SetNoiseLevel ... 77
5.7.49. FEISC_0x6D_GetNoiseLevel ... 77
5.7.50. FEISC_0x6E_RdDiag .. 78
5.7.51. FEISC_0x6F_AntennaTuning .. 78
5.7.52. FEISC_0x71_SetOutput... 79
5.7.53. FEISC_0x72_SetOutput... 79
5.7.54. FEISC_0x74_ReadInput .. 80
5.7.55. FEISC_0x75_AdjAntenna .. 80
5.7.56. FEISC_0x76_CheckAntennas.. 81
5.7.57. FEISC_0x80_ReadConfBlock .. 82
5.7.58. FEISC_0x81_WriteConfBlock .. 82
5.7.59. FEISC_0x82_SaveConfBlock .. 83
5.7.60. FEISC_0x83_ResetConfBlock ... 83
5.7.61. FEISC_0x85_SetSysTimer .. 84
5.7.62. FEISC_0x86_GetSysTimer .. 84
5.7.63. FEISC_0x87_SetSystemDate .. 85
5.7.64. FEISC_0x88_GetSystemDate.. 85
5.7.65. FEISC_0x8A_ReadConfiguration ... 86
5.7.66. FEISC_0x8B_WriteConfiguration ... 87
5.7.67. FEISC_0x8C_ResetConfiguration .. 88
5.7.68. FEISC_0x9F_Piggyback_Command .. 89
5.7.69. FEISC_0xA0_RdLogin ... 90
5.7.70. FEISC_0xA2_WriteMifareKeys .. 91
5.7.71. FEISC_0xA3_Write_DES_AES_Keys .. 92
5.7.72. FEISC_0xAD_WriteReaderAuthentKey ... 93
5.7.73. FEISC_0xAE_ReaderAuthent .. 94
5.7.74. FEISC_0xB0_ISOCmd... 95
5.7.75. FEISC_0xB1_ ISOCustAndPropCmd... 96
5.7.76. FEISC_0xB2_ISOCmd... 97
5.7.77. FEISC_0xB3_EPCCmd ... 98
5.7.78. FEISC_0xB4_EPC_UHF_Cmd .. 99
5.7.79. FEISC_0xBB_C1G2_ TranspCmd ... 100
5.7.80. FEISC_0xBC_CmdQueue ... 101
5.7.81. FEISC_0xBD_ ISOTranspCmd .. 102
5.7.82. FEISC_0xBE_ ISOTranspCmd .. 103
5.7.83. FEISC_0xBF_ ISOTranspCmd .. 104
5.7.84. FEISC_0xC0_SAMCmd, FEISC_0xC0_SAMCmd_Sync .. 105
5.7.85. FEISC_0xC1_DESFireCmd ... 106
5.7.86. FEISC_0xC2_MifarePlusCmd .. 106
5.7.87. FEISC_0xC3_DESFireCmd ... 107

5.8. Support for multithreading .. 108

6. Appendix .. 110

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 10 (of 123) H9391-41e-ID-B.doc

6.1. Error codes ... 110

6.2. List of variables .. 112

6.3. List of constants for the FEISC_EVENT_INIT structure .. 113

6.4. List of constants for TaskID and for the FEISC_TASK_INIT structure 113

6.5. History ... 115

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 11 (of 123) H9391-41e-ID-B.doc

1. Introduction

The support package ID FEISC is intended to support in programming application software by
integrating OBID i-scan® - and/or OBID® classic-pro Readers, and supports ANSI-C, ANSI-C++
und essentially any other language which can invoke C functions.

The support package provides a simple function interface for the OBID® Reader. Each protocol
documented in the system manuals the OBID® Reader Families has its own function. For data
transmission, one of the libraries from the transport layer (FECOM, FEUSB, FETCP) is bound
dynamically at run time.

This library package can be used with the following Operating Systems:

Operating System Target Notes

32-Bit 64-Bit

Windows XP X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Windows Vista / 7 X X

Windows CE X -

Linux X (X) with 64-Bit OS: only with 32-Bit Runtime
Environment

Apple Max OS X - X OS X V10.7.3 or higher
Architecture x86_64

The library FEISC is part of the second level of a hierarchical structured, multi-tier FEIG library
stack. It is only designed for executing Reader commands over the low-level protocol layer
(build/split of frames, check of CRC, check of frame length). The following picture shows the multi-
tier library stack.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 12 (of 123) H9391-41e-ID-B.doc

Applications, based on the layer of FEISC can execute each Reader command. As the library
manages no exchanged data, the implementation complexity increases when an Autoread-Mode
(Buffered-Read-Mode or Notification-Mode) is enabled and every Programmer should calculate the
costs for implementation. C++ Programmers should choose the FEDM class library from the next
level as the best API.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 13 (of 123) H9391-41e-ID-B.doc

1.1. Shipment

This support package consists of files listed in the tables below. Normally, this package is shipped
together with other libraries in a Software Development Kit (SDK) – e.g. ID ISC.SDK.Win.

1.1.1. Windows XP / Vista / 7

File Use

FEISC.DLL DLL with all functions

FEISC.LIB LIB file for linking with C/C++ projects

FEISC.H Header file for C/C++ projects

1.1.2. Windows CE

File Use

FEISCCE.DLL DLL with all functions

FEISCCE.LIB LIB file for linking with C/C++ projects

FEISC.H Header file for C/C++ projects

1.1.3. Linux

File Use

LIBFEISC.SO.x.y.z2 Function library

FEISC.H Header file for C/C++ projects

1.1.4. Mac OS X

File Use

LIBFEISC.x.y.z.dylib2 Function library

FEISC.H Header file for C/C++ projects

2 x.y.z. represents the version number of the library file

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 14 (of 123) H9391-41e-ID-B.doc

2. Changes since the previous version

• Improvements for secured data transmission:

1. FEISC_0x52_GetBaud extended

2. Repeat of a protocol after a Crypto Processing Error

• Improvements for FEISC_0xC0_SAMCmd_Sync concerning timeout behavour

Please note also the revision history in the Appendix to this document.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 15 (of 123) H9391-41e-ID-B.doc

3. Installation

Normally, this package is shipped together with other libraries in a Software Development Kit
(SDK). Copy the SDK into a directory of your choice.

The files of this library package can be found in the sub-directory feisc-lib.

3.1. 32- and 64-Bit Windows XP/Vista/7

If you won’t add your projects to the Samples path, we
recommend the following steps:

• Copy FEISC.DLL into the directory of the application
program (recommended) or into the Windows system
directory.

• Copy FEISC.LIB into the project or LIB directory.

• Copy FEISC.H into the project or INCLUDE directory.

• In the case that encrypted data transmission is used,
copy the library file libeay32.dll into the directory of the
application. The license issues of openSSL have to be
considered (http://www.openssl.org).

http://www.openssl.org/

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 16 (of 123) H9391-41e-ID-B.doc

3.2. Windows CE

If you won’t add your projects to the Samples path, we
recommend the following steps:

• Copy FEISCCE.DLL into the application directory or
system directory of the Windows CE system.

• Copy FEISCCE.LIB into the project or LIB directory.

• Copy FEISC.H into the project or INCLUDE directory

Note: you cannot use the DLL together with eMbedded Visual Basic 3.0.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 17 (of 123) H9391-41e-ID-B.doc

3.3. 32- and 64-Bit Linux

Choose one option for installation:

Option 1: If an install.sh is shipped inside the SDK root
directory, execute this install script. It will copy all library files
into the directory /usr/lib and creates symbolic links for each
library file. The header file can be copied into a directory of
your choice.

Option 2: Copy all files of this support package into a
directory of your choice and create symbolic links for
libfeisc.so.x.y.z3 in the directory /usr/lib with the following
calls:

cd /usr/lib

ln –s /<your_directory>/libfeisc.so.x.y.z libfeisc.so.x

ln –s /<your_directory>/libfeisc.so.x libfeisc.so

ldconfig

In the case that encrypted data transmission is used the
library file libcrypto.so must be installed. The license issues
of openSSL have to be considered (http://www.openssl.org).

Note: The library is compiled under SuSE Linux 11.1 with the GNU Compiler Collection V4.3.2.

3 x.y.z represents the version number

http://www.openssl.org/

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 18 (of 123) H9391-41e-ID-B.doc

3.4. 64-Bit Mac OS X

Choose one option for installation:

Option 1: If an install.sh is shipped inside the SDK root
directory, execute this install script. It will copy all library files
into the directory /usr/local/lib and creates symbolic links for
each library file. The header file can be copied into a
directory of your choice.

Option 2: Copy all files of this support package into a
directory of your choice and create symbolic links for
libfeisc.x.y.z.dylib4 in the directory /usr/local/lib with the
following calls:cd /usr/local/lib

ln –s libfeisc.x.y.z.dylib libfeisc.x.dylib

ln –s libfeisc.x.dylib libfeisc.dylib

Note: The library is compiled under Mac OS X V10.7.3 with Xcode V4.3.2 and is compatible with

the architecture x86_64.

4 x.y.z represents the version number

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 19 (of 123) H9391-41e-ID-B.doc

4. Including into the application program

4.1. Supported Development Tools

Operating System Development Tool Supported

Windows XP / Vista / 7 Visual Studio 6 on request

Visual Studio 2005 / 2008 / 2010 yes, Professional Version or higher
required

Borland C++ Builder on request

Embarcadero C++ Builder on request

Windows CE eMbedded Visual C++ 4 yes

Visual Studio 2005 / 2008 yes, Professional Version or higher
required

Linux GCC yes, for 32-Bit projects

Mac OS X GCC yes, for projects with x86_64 architecture

Xcode ≥ V4.3.2 yes, for projects with x86_64 architecture

4.2. Incorporating into Visual Studio

1. Add Include path for the header file in project settings (category C/C++)

2. Add feisc.lib (optional with path) in project settings (category Linker)

4.3. Incorporating into Xcode

1. Add path for the header file in project settings (User Header Search Paths in category
Search Paths)

2. add feisc.dylib with drag’n drop to your project

ID FECOM and/or ID FEUSB and/or ID FETCP must also be incorporated into your project if you
want to invoke functions from them.

In the case that encrypted data transmission is used the library file libeay32.dll (Windows) or

libcrypto.so (Linux) must be installed. The license issues of openSSL have to be considered

(http://www.openssl.org).

http://www.openssl.org/

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 20 (of 123) H9391-41e-ID-B.doc

5. Programming Interface

5.1. Overview

The FEISC library encapsulates for the programmer all the functions and parameters necessary
for simple communication with readers in the OBID i-scan® - or OBID® classic-pro Reader Family.
Together with the support package ID FECOM, ID FETCP or ID FEUSB, this makes it possible to
run all the protocols in the system manual of the OBID i-scan® - or OBID® classic-pro Reader
Family directly by invoking a function.

The functions in FEISC are responsible only for internal administration, protocol building, protocol
splitting and any necessary error outputs. The FEISC library alone is not enough to communicate
with an OBID i-scan® - or OBID® classic-pro Reader. You can however initiate the output of a
protocol and use the FECOM to communicate with an OBID i-scan® - or OBID® classic-pro Reader
over an asynchronous serial interface or the FETCP to communicate with a TCP/IP-Server or the
FEUSB to communicate through the USB port. Other interface drivers can be integrated with the
Plug-In mechanism.

Use of the FEUSB for communicating with OBID® USB devices is mandatory.

The core elements of the library are the Object Manager and the Reader objects generated during
runtime.

The Object Manager implements self-administration which frees an application program from
having to buffer any values, parameters or other settings: It keeps a list with all generated Reader
objects. The Reader object is the central program section that carries out the protocol functions
and is assigned a connection to the serial interface when using the FECOM or a channel to a USB
device when using the FEUSB or a TCP/IP-Server when using the FETCP. Each Reader object
administers all the parameters relevant to its protocol tasks within its local memory.

Before first using you must create a Reader object using the FEISC_NewReader function. If this
done without error, the return value includes a handle which is used by the application program as
an access number. This handle is required for unique identification of the generated Reader
object. If you are using self-administration, the Object List can be called up using the
FEISC_GetReaderList function. The successive handles which you then get can be used to read
out all the parameters pertaining to this object using the FEISC_GetReaderPara function.

A Reader object generated using FEISC_NewReader must always be deleted from memory using
the REISC_DeleteReader function.

If an application program is opened multiple times, each program (instance) gets an empty object
list by invoking FEISC_GetReaderList. This prevents mixing up access rights under different
program instances.

The object-oriented internal structure (see Fig. 1) is externally visible as a function interface,
making it language-neutral.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 21 (of 123) H9391-41e-ID-B.doc

Object Manager

FEISC_DeleteReader

FEISC_GetReaderList

FEISC_BuildProtocol

FEISC_SplitProtocol

FEISC_GetReaderPara

FEISC_SetReaderPara

FEISC

FEISC_NewReader

FEISC_GetDLLVersion

FEISC_SendTransparent

Reader Object
- ReaderHandle
- PortHandle
- Parameter

Port Object
 List of reader handles
- Version number

FECOM

FEISC_GetLastSendProt

FEISC_GetLastRecProt

FEISC_0x1A_Halt

FEISC_0xBF_ISOTranspCmd

FEISC_GetLastStatus

Reader Object
- ReaderHandle
- PortHandle
- Parameter

Reader Object
- ReaderHandle
- PortHandle
- Parameter

Device Object

FEUSB

Fig. 1: Internal structure of FEISC

Fig. 1 shows how several Reader objects can share a common serial interface in FECOM or a
common channel in FEUSB. No conflicts will occur as long as access to the port object takes
place sequentially within a work thread. In a multi-reading or multi-process environment however
appropriate measures have to be taken. These are not implemented in FECOM, FETCP, FEUSB
or FEISC.

Nearly all the library functions have a return value which is negative in case of error.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 22 (of 123) H9391-41e-ID-B.doc

5.2. Thread security

In principle, all FEIG libraries are not fully thread safe. But respecting some guidance, a practical
thread security can be realized allowing parallel execution of communication tasks. One should
keep in mind, that all OBID® RFID-Reader works synchronously and can perform commands only
in succession.

On the level of the transport layer (FECOM, FEUSB, FETCP) the communication with each port
must be synchronized in the application, as the Reader works synchronously. Using multiple ports
and so multiple Readers from different threads simultaneously is possible, as the internal port
objects acts independently from each other.

On the level of the protocol layer (FEISC), parallelism can be realized, when each Reader object
represents exactly one physical Reader and is bound with an individual communication port. This
is not true for the four specialized functions FEISC_BuildxxProtocol and FEISC_SplitxxProtocol,
which use an internal global buffer for protocol data.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 23 (of 123) H9391-41e-ID-B.doc

5.3. Parameter transfer

Some functions support parameter transfer both as a null-terminated string and as an array of hex
numbers. Transfer as data type UCHAR is possible for both data types. Interpretation of the
transfer value is indicated by the function parameter iDataFormat.

iDataForm
at

Parameter transfer interpreted as a pointer to

0 0x23, 0x56, 0xFA, 0xA6

(internally 0x23 corresponds to the character "#";
0x56 to the character "V"; etc.)

an array of UCHAR

1 "2356FAA6"
(each two characters are interpreted as a hex
value: Example: "23" -> 0x23)

a null-terminated string

All other parameters to be transferred as UCHAR must be given as a hex value (e.g. 0x23). It is
not possible to transfer by strings!

Note: UCHAR is used as an abbreviation (#define) for „unsigned char“.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 24 (of 123) H9391-41e-ID-B.doc

5.4. Asynchronous tasks for relieving the load on applications

A recurring task of applications is inventorying transponders in the antenna field of the reader.
Ideally this should run in the background and then tell the application when transponders are in the
field or when the notification has arrived.

This is precisely the functionality you can implement using the FEISC_StartAsyncTask function.
Internally a thread is started which waits for the reply protocol of the reader and provides the reply
data to the application using a callback function.

Asynchronous tasks are defined for two types of applications: for inventory in host mode or for
receiving Buffered-Read-Mode data in Notification Mode.

Asynchronous tasks can be specified for multiple Readers at the same time as long as they were
given their own object in the DLL using FEISC_NewReader. Readers on an RS485 bus are
problematic. In this case you can only “monitor” one Reader at a time, since they are all connected
on the same interface.

The features of the tasks are described in the table below:

Task TaskID Remarks

One-time
Inventory

FEISC_TASKID_FIRST_NEW_TAG A task can only started if the following option is integrated in the
Reader’s firmware: the Reader protocol [0xB0][0x01] Inventory must
support an optional NOTIFY flag in its Mode byte.

After receiving the Reader protocol within the specified time, the task
automatically closes itself. If the time is exceeded, the callback function
is invoked and the status 0x01 (No transponder in read field) send and
the task ended. In case of error the task is always ended immediately
and the callback function transmits the error code.

Serial, USB and TCP/IP interfaces are supported, whereby the ports
must be open before starting the task. Autonomous opening of the
connection via TCP/IP by the Reader or a suitable converter for sending
the data is not possible.

Callback-Function in FEISC_TASK_INIT: cbFct1

The response data in ucRspData are structurally adequate according to
the protocol response [0xB0] [0x01] ISO Command Inventory, which is
documented in the Reader’s system manual.

Repeating
Inventory

FEISC_TASKID_EVERY_NEW_TAG The same conditions as for one-time inventory apply, with the following
difference:

Repeating inventory defines a cyclical task which can only be cancelled
by FEISC_CancelAsyncTask. A cycle corresponds to a one-time
inventory and ends on a wait loop until the next cycle has been triggered
by the application using FEISC_TriggerAsyncTask. Application-side
triggering ensures that an application has time for receiving and
processing the inventory data.

Callback-Function in FEISC_TASK_INIT: cbFct1

The response data in ucRspData are structurally adequate according to
the protocol response [0xB0] [0x01] ISO Command Inventory, which is
documented in the Reader’s system manual.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 25 (of 123) H9391-41e-ID-B.doc

Receiving
notifications

FEISC_TASKID_NOTIFICATION A task should only be started if the Notification Mode is integrated and
activated in the Reader’s firmware. Only TCP/IP communication is
supported. Possible connection options are (see system manual for the
Reader):
- Temporary opening of the connection by the Reader for the duration

of data transmission
- Continuous opening of the connection by the Reader (in

development)
- Continuous opening of the connection by the host (in development)

The task defines an endless task which can only be cancelled using
FEISC_CancelAsyncTask or in case of error during the initialization
phase is ended immediately after invoking the callback function.

The task waits for reception of the Buffered-Read-Mode data and then
invokes the callback function. After the callback function returns, data
can immediately be received again by the Reader.

In case of transmission errors the callback function is invoked with the
error code and the receiving procedure then resumed. If the Keep-Alive
option is activated (recommended), then the listener socket is closed
automatically after a break of the network cable or after loss of power
and is recovered again. This ensures the reliability of the network
connection.

Note: Depending on the Reader setting large quantities of data may be
sent by the Reader in very short time intervals. Without use of a
handshake procedure (see system manual for the Reader) data may be
lost if the host is not appropriate for the quantity of notifications.

Callback-Function in FEISC_TASK_INIT: cbFct1 and cbFct2

The response data in ucRspData are structurally adequate according to
the protocol response [0x21] Read Buffer rsp. [0x22] Read Buffer, which
is documented in the Reader’s system manual.

SAM
communication

FEISC_TASKID_SAM_COMMAND A single task for communication with a SAM (Security Application
Module) inside an OBID® classic-pro Reader with SAM-Socket is
executed with the function FEISC_0xC0_SAMCmd.

After receiving the Reader protocol within the specified time, the task
automatically closes itself. If the time is exceeded, the callback function
is invoked with the error code -4082 (FEISC_ERR_TASK_TIMEOUT)
and the task ended. In case of error the task is always ended
immediately and the callback function transmits the error code.

Serial and USB interfaces are supported, whereby the ports must be
open before starting the task.

Callback-Function in FEISC_TASK_INIT: cbFct1

The response data in ucRspData are structurally adequate according to
the protocol response [0xC0] SAM Commands, which is documented in
the Reader’s system manual.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 26 (of 123) H9391-41e-ID-B.doc

Command
Queue

FEISC_TASKID_COMMAND_QUEUE A single task for launching a [0xBC] Command Queue inside an OBID®
classic-pro Reader is executed with the function
FEISC_0xBC_CmdQueue.

After receiving the Reader protocol within the specified time, the task
automatically closes itself. If the time is exceeded, the callback function
is invoked with the error code -4082 (FEISC_ERR_TASK_TIMEOUT)
and the task ended. In case of error the task is always ended
immediately and the callback function transmits the error code.

Serial and USB interfaces are supported, whereby the ports must be
open before starting the task.

Callback-Function in FEISC_TASK_INIT: cbFct1

The response data in ucRspData are structurally adequate according to
the protocol response [0xBC] Command Queue, which is documented in
the Reader’s system manual.

MAX Event FEISC_TASKID_MAX_EVENT A task should only be started if Access Mode is integrated and activated
in the Reader’s firmware. Only TCP/IP communication is supported with
a temporary connection initiated by the Reader.

The task defines an endless task which can only be cancelled using
FEISC_CancelAsyncTask or in case of error during the initialization
phase is ended immediately after invoking the callback function.

The task waits for reception of the event data and then invokes the
callback function. After the callback function returns, data can
immediately be received again by the Reader.

In case of transmission errors the callback function is invoked with the
error code and the receiving procedure then resumed. If the Keep-Alive
option is activated (recommended), then the listener socket is closed
automatically after a break of the network cable or after loss of power
and is recovered again. This ensures the reliability of the network
connection.

Callback-Function in FEISC_TASK_INIT: cbFct3

The response data in ucRspData are structurally adequate according to
the protocol response [0x1F] [0x05] Read Table for TableID = 0x05
(EventTable), which is documented in the Reader’s system manual.

People Counter
Event

FEISC_TASKID_PEOPLE_COUNTER A task should only be started if the Notification Mode is integrated and
activated in the Reader’s firmware and at least one external Function
Unit of type ID ISC.ANTGPC (People Counter) is connected.

The internal handling of the task is identical to Notification. Thus, the
spec for this task is identical as for FEISC_TASKID_NOTIFICATION.

A People Counter Event needs no handshake mechanism.

Callback-Function in FEISC_TASK_INIT: cbFct1 and cbFct2

The response data in ucRspData are structurally adequate according to
the protocol response [0x77] Get Counter, which is documented in the
system manual of GatePeopleCounter.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 27 (of 123) H9391-41e-ID-B.doc

The internal behavior is determined essentially by the structure FEISC_TASK_INIT, which is sent
using FEISC_StartAsyncTask. Among other things it contains the necessary parameters for the
callback function:

typedef struct _FEISC_TASK_INIT
{
 void* pAny; // pointer to anything, which is reflected as the first parameter
 // in the callback function (e.g. can be used to pass the object pointer)
 unsigned char ucBusAdr; // busaddress for serial communication
 unsigned int uiChannelType; // defines the channel type to be used
 int iConnectByHost; // if 0: TCP/IP connection is initiated by reader. otherwise by host
 char cIPAdr[16]; // server ip address
 // note: only for channel type FEISC_TASK_CHANNEL_TYPE_NEW_TCP
 int iPortAdr; // server or host port address
 // note: only for channel type FEISC_TASK_CHANNEL_TYPE_NEW_TCP
 UINT uiTimeout; // timeout for asynchronous task in steps of 100ms or
 // timeout for notification task in steps of 1s
 UINT uiFlag; // specifies the use of the union (e.g. FEISC_TASKCB_1)

 // only for authentication in notification mode
 bool bCryptoMode; // security mode on/off
 unsigned int uiAuthentKeyLength; // authent key length
 unsigned char ucAuthentKey[32]; // authent key

 // only for notification or max event mode
 bool bKeepAlive; // if true, keep alive option will be enabled (recommended)
 unsigned int uiKeepAliveIdleTime; // wait time in ms for first probe after connection is dropped down
 // for Linux: time is rounded up to seconds
 unsigned int uiKeepAliveProbeCount; // only for Linux: number of probes
 // for Windows Server 2003, and XP it is fixed to 5 by Microsoft
 // for Windows Vista and later it is fixed to 10 by Microsoft
 unsigned int uiKeepAliveIntervalTime; // wait time in ms between probes
 // for Linux: time is rounded up to seconds

 union
 {
 // for notification and inventory task, SAM and Queue Command response, People Counter event
 void (*cbFct1)(void* pAny, // [in] pointer to anything (from struct _FEISC_TASK_INIT)
 int iReaderHnd, // [in] reader handle of FEISC
 int iTaskID, // [in] task identifier from FEISC_StartAsyncTask(..)
 int iError, // [in] OK (=0), error code (<0) or status byte from reader (>0)
 unsigned char ucCmd, // [in] reader command
 unsigned char* ucRspData, // [in] response data
 int iRspLen); // [in] length of response data

// only for notification task and People Counter event
 void (*cbFct2)(void* pAny, // [in] pointer to anything (from struct _FEISC_TASK_INIT)
 int iReaderHnd, // [in] reader handle of FEISC
 int iTaskID, // [in] task identifier from FEISC_StartAsyncTask(..)
 int iError, // [in] OK (=0), error code (<0) or status byte from reader (>0)
 unsigned char ucCmd, // [in] reader command
 unsigned char* ucRspData, // [in] response data
 int iRspLen, // [in] length of response data
 char* cIPAdr, // [in] ip address of the reader
 int iPortNr); // [in] local port number which received the notification

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 28 (of 123) H9391-41e-ID-B.doc

// only for MAX notification task
 void (*cbFct3)(void* pAny, // [in] pointer to anything (from struct _FEISC_TASK_INIT)
 int iReaderHnd, // [in] reader handle of FEISC
 int iTaskID, // [in] task identifier from FEISC_StartAsyncTask(..)
 int iError, // [in] OK (=0), error code (<0) or status byte from reader (>0)
 unsigned char ucCmd, // [in] reader command
 unsigned char* ucRspData, // [in] response data
 int iRspLen, // [in] length of response data
 char* cIPAdr, // [in] ip address of the reader
 int iPortNr, // [in] local port number which received the notification
 unsigned char& ucAction); // [out] action set by host application
 }Method5;

 union

{
 int iNotifyWithAck; // 0: notification without acknowledge
 // 1: notification with acknowledge
 }InData4

} FEISC_TASK_INIT;

The core element of the structure is the union (method), which contains one or more function
pointers. Selection of the callback function is handled by the parameter uiFlag. The parameter
pAny can be used for any data and is returned in the first parameter of the callback function. C++
programmers can thus have a pointer for the invoking object sent to the static declared callback
function and in this way access class functions. uiTimeout defines the timeout for an inventory
cycle or the maximal time for receiving a notification protocol. The value depends on the
specifications in the system manual for the reader for the protocol [0xB0][0x01] Inventory or in
seconds for notification timeout.

The structure variables cClientIP and iPortAdr are intended only for the Notification task. When
using the TCP/IP channel for the inventory task the socket must already be opened before starting
the asynchronous task.

Important Note: the structure FEISC_TASK_INIT must always be initialized on application-side
with 0 with a call of memset(myTaskInit, 0, sizeof(FEISC_TASK_INIT));

5 Naming of the union with Method or InData is only for C-programmers. C++ programmers access the union
directly through the structure.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 29 (of 123) H9391-41e-ID-B.doc

5.5. Event flagging to applications6

Event handling mechanisms can be installed for some events. As soon as a send protocol for
example is output over the interface, you can also notify the application of the event asynchronous
to the program sequence. The application must already contain a corresponding function for this
(s. 5.7.10. FEISC_AddEventHandler). These event handling mechanism must not mistake with the
handling of events, triggered by starting of asynchronous tasks.

An event handling mechanism must be installed using the FEISC_AddEventHandler function.
You may choose between five various flagging methods: Message to a calling process, message
to a window use one of two possible callback function, or flagging with a Windows-API event.

An already installed event handling mechanism must be deleted using the
FEISC_DelEventHandler function.

The structure FEISC_EVENT_INIT contains the parameters required for flagging:
typedef struct _FEISC_EVENT_INIT
{
 void* pAny; // pointer to anything, which is reflected as the first parameter
 // in the 4th callback function (e.g. can be used to pass the object pointer)
 UINT uiUse; // Defines the event (e.g. FEISC_PRT_EVENT)
 UINT uiMsg; // Message Code for dwThreadID and hwndWnd (e.g. WM_USER_xyz)
 UINT uiFlag; // Specifies use of the union (e.g. FEISC_WND_HWND)
 union
 {
 DWORD dwThreadID; // for Thread-ID
 HWND hwndWnd; // for Window-Handle
 void (*cbFct)(int, int); // for first Callback-Function
 void (*cbFct2)(BSTR, int, int); // for second Callback-Function
 void (*cbFct4)(void*, const char*, int); // for 4th callback-Function (3rd callback not public)
 HANDLE hEvent; // for Event-Handle
 }Method7;

} FEISC_EVENT_INIT;

The core element of the structure is the union, which contains either the ID of a process, the
handle of a window, a function pointer or the handle of an Windows-API event. The uiFlag
parameter is used to select the flag form. You use the uiUse parameter to store a designator for
the event for assigning the handling method. To use the message methods you must store the
message code in uiMsg.

You may install more than one handling mechanism for a single event. However, each
dwThreadID, hwndWnd, cbFct, cbFct2, cbFct4 or hEvent can be used only once per event.

6 Can be used only with limitations for Linux C/C++ projects
7 Naming of the union with method is only for C-programmers. C++ programmers access the union directly
through the structure.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 30 (of 123) H9391-41e-ID-B.doc

5.6. Secured data transmission with encryption

.

5.6.1. Overview

Some OBID i-scan®- and OBID® classic-pro Reader can secure the data transmission over
Ethernet (TCP/IP) with an 256 bit AES algorithm. The Authentication Key (Password) is stored in
the Reader and cannot read back. The crypto mode is disabled by default.

The encrypted data transmission is realized with functions of the Open-Source organisation
openSSL (http://www.openssl.org), which are part of the library file libeay32.dll (Windows) rsp.
libcrypto.so (Linux). The binding to the openSSL library file will be affected at runtime with the first
call of an openSSL function. This has the advantage that all applications are freed from the
installation of the openSSL library file if no encrypted data transmission is used. In the case that
encrypted data transmission is used the license issues of openSSL have to be considered.

The encrypted data transmission will be enabled by activating the crypto mode in the Reader
configuration with a following CPU-Reset. After that, the Reader accepts only enciphered
protocols. To get access rights in crypto mode, the first command must be an authentication
command (FEISC_0xAE_ReaderAuthent), transporting the enciphered password (password
contains only nulls by default), to open a new session. Every successive protocol will then
enciphered automatically.

Note: After the first authentication a new password should be saved in the Reader and a new
authentication with the new password should be executed. This procedure – to switch into the
cryto mode first and to change the password secondly – ensures that the new password will be
transmitted enciphered! Otherwise the new password will be transmitted plain.

5.6.2. Feedback of error cases

A Reader with activated crypto mode ignores all plain protocols and returns the status 0x19
(Crypto Processing Error).

A Reader in plain mode ignores all enciphered protocols and returns the status 0x82 (Command
not available).

An authentication into the Reader with a false password will be returned with status 0x12 (Authent
Error).

A Reader with activated crypto mode signals with status 0x19 (Crypto Processing Error) an error
case in the enciphered transmission. The Host must execute an authentication into the Reader
again.

The error codes -4093 and -4094 returned by FEISC_0x.. functions signals a Host-side error case
in the enciphered transmission. The Host must execute an authentication into the Reader again

The error code -4090 signals an error while loading the openSSL library file. Probably the library
file is not installed or an incompatible version is installed.

http://www.openssl.org/

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 31 (of 123) H9391-41e-ID-B.doc

5.6.3. Notes for Programmers

Adding enciphered data transmission into a project needs only few aspects to be considered:

1. Every communication function FEISC_0x… is prepared for plain and enciphered data
transmission.

2. It is a requirement to link each OBID i-scan®- or OBID® classsic-pro Reader with one
Reader object exclusively, because every Reader object manages the individual session
data.

3. After executing a connection with FETCP_Connect an authentication into the Reader is
required.

4. If the Host application receives after a plain or enciphered data transmission the status
0x19 an authentication into the Reader is required.

5. If the error codes -4093 or -4094 occures in the Host application an authentication into the
Reader is required.

6. In the Notification- and Access-Mode the data transmission is enciphered if the crypto
mode is enabled in the Reader. Thus, the password must be added to the structure
FEISC_TASK_INIT.

7. If the crypto mode is disabled in the Reader configuration by a configuration protocol, the
Reader object changes automatically back into the plain mode with the next plain protocol.
This has the advantage that the existing Reader object can be maintained. A new
connection is also not necessary.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 32 (of 123) H9391-41e-ID-B.doc

5.7. List of functions

The support package contains a large number of functions for various tasks. They are divided into
groups for better orientation. Please note that most of the functions can be used only in
conjunction (direct or indirect) with the ID FECOM or FETCP or ID FEUSB support package.

Administration functions for Reader Objects
• int FEISC_NewReader(int iPortHnd)

• int FEISC_DeleteReader(int iReaderHnd)

• int FEISC_GetReaderList(int iNext)

• int FEISC_GetReaderPara(int iReaderHnd, char* cPara, char* cValue)

• int FEISC_SetReaderPara(int iReaderHnd, char* cPara, char* cValue)

• void FEISC_GetDLLVersion(char* cVersion)

• int FEISC_GetErrorText(int iErrorCode, char* cErrorText)

• int FEISC_GetStatusText(UCHAR ucStatus, char* cStatusText)

• int FEISC_AddEventHandler(int iReaderHnd, FEISC_EVENT_INIT* pInit)

• int FEISC_DelEventHandler(int iReaderHnd, FEISC_EVENT_INIT* pInit)

Functions for Plug-in objects to connect alternative port types
• int FEISC_PI_Get(const char* cLibName, void** pPlugIn)

• int FEISC_PI_Install(int iReaderHnd, void* pPlugIn)

• int FEISC_PI_Remove(int iReaderHnd)

• int FEISC_PI_OpenPort(int iReaderHnd, char* cPortDefinition)

• int FEISC_PI_ClosePort(int iReaderHnd)

• int FEISC_PI_GetPortPara(int iReaderHnd, char* cPara, char* cValue)

• int FEISC_PI_SetPortPara(int iReaderHnd, char* cPara, char* cValue)

• int FEISC_PI_GetDLLVersion(int iReaderHnd, char* cVersion)

• int FEISC_PI_GetErrorText(int iReaderHnd, int iErrorCode, char* cErrorText)

Protocol functions
• int FEISC_BuildSendProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR cCmdByte, UCHAR* cSendData, int

iDataLen, UCHAR* cSendProt, int iDataFormat)

• int FEISC_BuildRecProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR cCmdByte, UCHAR cStatus, UCHAR*

cRecData, int iDataLen, UCHAR* cRecProt, int iDataFormat)

• int FEISC_SplitSendProtocol(int iReaderHnd, UCHAR* cSendProt, int iSendLen, UCHAR* cBusAdr, UCHAR*

cCmdByte, UCHAR* cSendData, int* iDataLen, int iDataFormat)

• int FEISC_SplitRecProtocol(int iReaderHnd, UCHAR* cRecProt, int iRecLen, UCHAR* cBusAdr, UCHAR*

cCmdByte, UCHAR* cRecData, int* iDataLen, int iDataFormat)

Query functions
• int FEISC_GetLastSendProt(int iReaderHnd, UCHAR* cSendProt, int iDataFormat)

• int FEISC_GetLastRecProt(int iReaderHnd, UCHAR* cRecProt, int iDataFormat)

• int FEISC_GetLastState(int iReaderHnd, char* cStatusText)

• int FEISC_GetLastRecProtLen(int iReaderHnd)

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 33 (of 123) H9391-41e-ID-B.doc

• int FEISC_GetLastError(int iReaderHnd , int* iErrorCode, char* cErrorText)

General communication functions
• int FEISC_SendTransparent(int iReaderHnd, UCHAR* cSendProt, int iSendLen, UCHAR* cRecProt, int iRecLen,

int iCheckSum, int iDataFormat)

• int FEISC_Transmit(int iReaderHnd, UCHAR* cSendProt, int iSendLen, int iCheckSum, int iDataFormat)

• int FEISC_Receive(int iReaderHnd, UCHAR* cRecProt, int iRecLen, int iCheckSum, iDataFormat)

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 34 (of 123) H9391-41e-ID-B.doc

Special communication functions
• int FEISC_0x18_Destroy(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR* cEPC, UCHAR* cPW)

• int FEISC_0x1A_Halt(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x1B_ResetQuietBit(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x1C_EASRequest(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x21_ReadBuffer(int iReaderHnd, UCHAR cBusAdr, UCHAR cSets, UCHAR* cTrData, UCHAR*

cRecSets, UCHAR* cRecDataSets, int iDataFormat)

• int FEISC_0x22_ReadBuffer(int iReaderHnd, UCHAR cBusAdr, int iSets, UCHAR* cTrData, UCHAR* cRecSets,

int* iRecDataSets, int iDataFormat)

• int FEISC_0x31_ReadDataBufferInfo(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTabSize, UCHAR* cTabStart,

UCHAR* cTabLen, int iDataFormat)

• int FEISC_0x32_ClearDataBuffer(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x33_InitBuffer(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x34_ForceNotifyTrigger(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode)

• int FEISC_0x52_GetBaud(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x55_StartFlashLoader(int iReaderHnd)

• int FEISC_0x55_StartFlashLoaderEx(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x63_CPUReset(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x65_SoftVersion(int iReaderHnd, UCHAR cBusAdr, UCHAR* cVersion, int iDataFormat)

• int FEISC_0x66_ReaderInfo(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR* cVersion, int

iDataFormat)

• int FEISC_0x69_RFReset(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x6A_RFOnOff(int iReaderHnd, UCHAR cBusAdr, UCHAR cRF)

• int FEISC_0x6B_CentralizedRFSync(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cTxChannel, int

iTxPeriod, UCHAR cRes1, UCHAR cRes2)

• int FEISC_0x6C_SetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel, int iDataFormat)

• int FEISC_0x6D_GetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel, int iDataFormat)

• int FEISC_0x6E_RdDiag(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR* cData)

• int FEISC_0x6F_AntennaTuning(int iReaderHnd, UCHAR cBusAdr)

• int FEISC_0x71_SetOutput(int iReaderHnd, UCHAR cBusAdr, int iOS, int iOSF, int iOSTime, int iOutTime)

• int FEISC_0x72_SetOutput(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cOutN, UCHAR*

pRecords)

• int FEISC_0x74_ReadInput(int iReaderHnd, UCHAR cBusAdr, UCHAR* cInput)

• int FEISC_0x75_AdjAntenna(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel, int iDataFormat)

• int FEISC_0x80_ReadConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr, UCHAR* cConfBlock, int

iDataFormat)

• int FEISC_0x81_WriteConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr, UCHAR* cConfBlock, int

iDataFormat)

• int FEISC_0x82_SaveConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr)

• int FEISC_0x83_ResetConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR cConfAdr)

• int FEISC_0x85_SetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime, int iDataFormat)

• int FEISC_0x86_GetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime, int iDataFormat)

• int FEISC_0x87_SetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR cCentury, UCHAR cYear, UCHAR

cMonth, UCHAR cDay, UCHAR cTimezone, UCHAR cHour, UCHAR cMinute, int iMilliSecond)

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 35 (of 123) H9391-41e-ID-B.doc

• int FEISC_0x88_GetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR* cCentury, UCHAR* cYear, UCHAR*

cMonth, UCHAR* cDay, UCHAR* cTimezone, UCHAR* cHour, UCHAR* cMinute, int* iMilliSecond)

• int FEISC_0x8A_ReadConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR cDevice, UCHAR cBank, UCHAR

cMode, int iReqBlockAdr, UCHAR cReqBlockCount, UCHAR* cRspBlockCount, UCHAR* cRspBlockSize, UCHAR*

cReqData)

• int FEISC_0x8B_WriteConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR cDevice, UCHAR cBank, UCHAR

cMode, UCHAR cReqBlockCount, UCHAR cReqBlockSize, UCHAR* cReqData)

• int FEISC_0x8C_ResetConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR cDevice, UCHAR cBank,

UCHAR cMode, int iReqBlockAdr, UCHAR cReqBlockCount)

• int FEISC_0x9F_Piggyback_Command(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cDevice,

UCHAR cPort, UCHAR* cReqPrt, int iReqLen, UCHAR* cRspPrt, int* iRspLen)

• int FEISC_0xA0_RdLogin(int iReaderHnd, UCHAR cBusAdr, UCHAR* cRd_PW, int iDataFormat)

• int FEISC_0xA2_WriteMifareKeys(int iReaderHnd, UCHAR cBusAdr, UCHAR cType, UCHAR cAdr, UCHAR*

cKey, int iDataFormat)

• int FEISC_0xA3_Write_DES_AES_Keys(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR

cReaderKeyIndex, UCHAR cAuthentMode, UCHAR cKeyLen, UCHAR* cKey, int iDataFormat)

• int FEISC_0xAD_WriteReaderAuthentKey(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cKeyType,

UCHAR cKeyLen, UCHAR* cKey, int iDataFormat)

• int FEISC_0xAE_ReaderAuthent(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR cKeyType, UCHAR

cKeyLen, UCHAR* cKey, int iDataFormat)

• int FEISC_0xB0_ISOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqData, int iReqLen, UCHAR* cRspData,

int* iRspLen, int iDataFormat)

• int FEISC_0xB1_ISOCustAndPropCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cMfr, UCHAR* cReqData, int

iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

• int FEISC_0xB2_ISOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqData, int iReqLen, UCHAR* cRspData,

int* iRspLen, int iDataFormat)

• int FEISC_0xB3_EPCCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqData, int iReqLen, UCHAR*

cRspData, int* iRspLen, int iDataFormat)

• int FEISC_0xB4_EPC_UHF_Cmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cMfr, UCHAR* cReqData, int

iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

• int FEISC_0xBB_C1G2_TranspCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR ucMode, UCHAR ucTxPara,

UCHAR ucRxPara, unsigned int uiTs, int iRspLength, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int*

iRspLen)

• int FEISC_0xBC_CmdQueue(int iReaderHnd, int iMode, int iCmdCount, UCHAR* cCmdQueue, int iCmdQueueLen,

FEISC_TASK_INIT* pInit)

• int FEISC_0xBD_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int iRspLength, UCHAR*

cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

• int FEISC_0xBE_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int iRspLength, UCHAR*

cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

• int FEISC_0xBF_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int iRspLength, UCHAR* cReqData,

int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

• int FEISC_0xC0_SAMCmd(int iReaderHnd, int iSlot, UCHAR* cReqData, int iReqLen, FEISC_TASK_INIT* pInit)

• int FEISC_0xC0_SAMCmd_Sync(int iReaderHnd, UCHAR cBusAdr, int iSlot, int iTimeout, UCHAR* cReqData, int

iReqLen, UCHAR* cRspData, int* iRspLen)

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 36 (of 123) H9391-41e-ID-B.doc

• int FEISC_0xC1_DESFireCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd, UCHAR cMode, UCHAR*

cAppID, UCHAR cReaderKeyIndex, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int

iDataFormat)

• int FEISC_0xC2_MifarePlusCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd, UCHAR cMode, UCHAR*

cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

• int FEISC_0xC3_DESFireCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd, UCHAR cMode, UCHAR*

cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Special functions for asynchronous tasks
• int FEISC_StartAsyncTask(int iReaderHnd, int iTaskID, FEISC_TASK_INIT* pInit, void* pInput)

• int FEISC_CancelAsyncTask(int iReaderHnd)

• int FEISC_TriggerAsyncTask(int iReaderHnd)

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 37 (of 123) H9391-41e-ID-B.doc

5.7.1. Which function for which OBID i-scan® and OBID® classic-pro Reader

For OBID classic-pro Reader please have a look to the system manuals which contains a reader
command matrix.

Function ISC.M01 ISC.M02 ISC.PR
ISC.MR

ISC.PRH ISC.LR ISC.MRU ISC.LRU CPR

FEISC_0x18_Destroy X X X X

FEISC_0x1A_Halt X X

FEISC_0x1B_ResetQuietBit X X X

FEISC_0x1C_EASRequest X X X

FEISC_0x1F_MAXDataExchange X

FEISC_0x21_ReadBuffer X

FEISC_0x22_ReadBuffer X X

FEISC_0x31_ReadDataBufferInfo X X X

FEISC_0x32_ClearDataBuffer X X X

FEISC_0x33_InitBuffer X X X

FEISC_0x34_ForceNotifyTrigger X X

FEISC_0x52_GetBaud X X X X X X X X

FEISC_0x55_StartFlashLoader X X X X X X

FEISC_0x55_StartFlashLoaderEx X X X X X X X

FEISC_0x63_CPUReset X X X X X X X X

FEISC_0x64_SystemReset X X

FEISC_0x65_SoftVersion X X X X X X X

FEISC_0x66_ReaderInfo X X

FEISC_0x69_RFReset X X X X X X X X

FEISC_0x6A_RFOnOff X X X X X X X X

FEISC_0x6B_CentralizedRFSync X X

FEISC_0x6C_SetNoiseLevel X X

FEISC_0x6D_GetNoiseLevel X X

FEISC_0x6E_RdDiag X X X

FEISC_0x6F_AntennaTuning X

FEISC_0x71_SetOutput X X X X X X X X

FEISC_0x72_SetOutput X X

FEISC_0x74_ReadInput X X X X X X

FEISC_0x75_AdjAntenna X

FEISC_0x76_CheckAntennas X

FEISC_0x80_ReadConfBlock X X X X X X X X

FEISC_0x81_WriteConfBlock X X X X X X X X

FEISC_0x82_SaveConfBlock X X X X X X X X

FEISC_0x83_ResetConfBlock X X X X X X X X

FEISC_0x85_SetSysTimer X

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 38 (of 123) H9391-41e-ID-B.doc

Function ISC.M01 ISC.M02 ISC.PR
ISC.MR

ISC.PRH ISC.LR ISC.MRU ISC.LRU CPR

FEISC_0x86_GetSysTimer X

FEISC_0x87_SetSystemDate X

FEISC_0x88_GetSystemDate X

FEISC_0x9F_Piggyback_Command X

FEISC_0xA0_RdLogin X X

FEISC_0xA2_WriteMifareKeys X

FEISC_0xA3_Write_DES_AES_Keys X

FEISC_0xB0_ISOCmd X X X X X X X X

FEISC_0xB1_ISOCustAndPropCmd X

FEISC_0xB2_ISOCmd X X X X X

FEISC_0xB3_EPCCmd X X

FEISC_0xB4_EPC_UHF_Cmd X X

FEISC_0xBB_C1G2_TranspCmd X X

FEISC_0xBC_CmdQueue X

FEISC_0xBD_ISOTranspCmd X

FEISC_0xBE_ISOTranspCmd X

FEISC_0xBF_ISOTranspCmd X X X X X

FEISC_0xC0_SAMCmd
FEISC_0xC0_SAMCmd_Sync

 X

FEISC_0xC1_DESFireCmd
FEISC_0xC3_DESFireCmd

 X

FEISC_0xC2_MifarePlusCmd X

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 39 (of 123) H9391-41e-ID-B.doc

5.7.2. FEISC_NewReader

Function Creates a Reader object.

Syntax int FEISC_NewReader(int iPortHnd)

Description A Reader object is created. Protocol functions require a Reader object in order to run.

iPortHnd8 is the handle of a port object created from FECOM using the
FECOM_OpenPort function or a device object using the FEUSB_OpenDevice function
or a TCP/IP socket object using the FETCP_Connect function. This handle allows
protocols to be directly passed on to FECOM or FETCP or FEUSB. Transfer of a 0 is
also permitted. If the communication with an own port driver is necessary, the constant
FEISC_PLUGIN must be transmitted and this port driver must previously be installed
with the call of FEISC_InstallPlugIn.

Multiple Reader objects can in principle carry out their communication over the same
serial COM port, the same TCP/IP socket or the same USB channel. In the case of
secured data transmission the exclusive link of one Reader to one Reader objects is
required.

iPortHnd uses the first byte (MSB) of the PortHandle to distinguish between protocol
output to FECOM or FEUSB:

iPortHnd = 0x0XXXXXXX9 indicates output to FECOM.DLL/SO
iPortHnd = 0x1XXXXXXX indicates output to FEUSB.DLL/SO
iPortHnd = 0x2XXXXXXX indicates output to FETCP.DLL/SO

You may change the value of the PortHandle stored in the Reader object after the fact
using the FEISC_SetReaderPara function.

A Reader object created with FEISC_NewReader must (!) be deleted from memory
using the FEISC_DeleteReader function. Otherwise the memory reserved by the library
is not freed up again.

Return value If a Reader object was created without error, a handle (>0) is returned. In case of error,
the function returns a value less than zero.

A list of error codes can be found in the Appendix.

Example ...
#include "feisc.h"
#include "fecom.h"
...
...
char cPortNr[4];
itoa(1, cPortNr, 10); // Convert Integer to Char

int iPortHnd = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(iPortHnd < 0)
{
 // code here in case of error

8 iPortHnd is used in this document throughout to mean iDevHnd or iSocketHnd as well
9 X represents any hex value

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 40 (of 123) H9391-41e-ID-B.doc

}
else
{ // Open Reader object
 int iReaderHnd = FEISC_NewReader(iPortHnd);
}

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 41 (of 123) H9391-41e-ID-B.doc

5.7.3. FEISC_DeleteReader

Function Deletes a Reader object

Syntax int FEISC_DeleteReader(int iReaderHnd)

Description The function deletes the Reader object indicated by the parameter iReaderHnd and
frees up the reserved memory.

Return value The return value is 0 if the action was successful. In case of error, the function returns a
value less than zero.

A list of error codes can be found in the Appendix.

Example ...
#include "feisc.h"
...
...
int iErr;
int iReaderHnd = FEISC_NewReader(0);
if(iReaderHnd < 0)
{
 // code here in case of error
}
...
...
...
if(iReaderHnd > 0)
{ iErr = FEISC_DeleteReader(iReaderHnd);
 ...
}
...
...

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 42 (of 123) H9391-41e-ID-B.doc

5.7.4. FEISC_GetReaderList

Function Depending on the iNext parameter, gets the first or following Reader handle from the
internal list of the generated Reader objects.

Syntax int FEISC_GetReaderList(int iNext)

Description The function returns a Reader handle from the internal list of Reader handles. If one
transmits a 0 for iNext, the first entry in the list is returned. If you transmit a Reader
handle contained in the list with iNext, the function gets and returns the entry following
the Reader handle. In this way you can keep incrementing the return value to go through
the list and call out all the entries.

Return value When an entry is found, the Reader handle is provided with the return value. When the
end of the internal list is reached, in other words the transferred Reader handle has no
following entry, a 0 is returned. If there is no Reader object, FEISC_ERR_EMPTY_LIST
is returned.

In case of error, the function returns a value less than zero.

A list of error codes can be found in the Appendix.

Example ...
#include "feisc.h"
...
// Example function for creating a list of Reader objects
void ReaderList(void)
{ int iNextHnd = FEISC_GetReaderList(0); // get the first handle
 while(iNextHnd > 0)
 { // here for example code for collecting the handles and reading out parameters
 ...
 iNextHnd = FEISC_GetReaderList(iNextHnd); // get next handle
 }
...
 // here for example code for displaying a list
}

Tip When closing all open created Reader objects it is convenient to use a loop such as in
the example above. Bear in mind however than you cannot get the next in line from a
deleted Reader object. The following code fragment gives you an idea of how to delete
all created Reader objects in a loop:
...
int iNextHnd, iCloseHnd, iError;
iNextHnd = FEISC_GetReaderList(0); // get first handle
while(iNextHnd > 0)
{ iCloseHnd = iNextHnd;
 iNextHnd = FEISC_GetReaderList(iNextHnd); // get next handle
 iError = FEISC_DeleteReader(iCloseHnd); // only now delete Reader object

}

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 43 (of 123) H9391-41e-ID-B.doc

5.7.5. FEISC_GetDLLVersion

Function Gets the DLL/SO version number.

Syntax void FEISC_GetDLLVersion(char* cVersion)

Description The function returns the version number of the DLL/SO.

cVersion is an empty, null-terminated string for returning the version number. The string
should be able to hold at least 256 characters.

The string is filled with the current version number (e.g. “07.00.00“). Newer versions may
provide additional information.

Return value none

Example ...
#include "feisc.h"
...
...
char cVersion[256];
FEISC_GetDLLVersion(cVersion);
 // code here for displaying the version number
...
...

5.7.6. FEISC_GetErrorText

Function Gets error text for error code

Syntax int FEISC_GetErrorText(int iErrorCode, char* cErrorText)

Description This function uses cErrorText to send a short error text associated with the iErrorCode.

The buffer for cErrorText should be able to hold at least 256 characters.

Return value If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

Example
...
#include "feisc.h"
...
...
char cErrorText[256];
...

int iBack = FEISC_GetErrorText(FEISC_ERR_PROTLEN, cErrorText)
 // code here for displaying the text
...
...

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 44 (of 123) H9391-41e-ID-B.doc

5.7.7. FEISC_GetStatusText

Function Gets a short text for status byte

Syntax int FEISC_GetStatusText(UCHAR ucStatus, char* cStatusText)

Description This function uses cStatusText to send a short text associated with the ucStatus.

The buffer for cStatusText should be able to hold at least 128 characters.

Return value If there is no error the function returns zero, and if error a value less than zero. The list
of error codes can be found in the Appendix.

Example
...
#include "feisc.h"
...
...
char cStatusText[128];
...

int iBack = FEISC_GetStatusText(0x01, cStatusText)
 // code here for displaying the text
...
...

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 45 (of 123) H9391-41e-ID-B.doc

5.7.8. FEISC_GetReaderPara

Function Gets a parameter from a Reader object

Syntax int FEISC_GetReaderPara(int iReaderHnd, char* cPara, char* cValue)

Description The function gets the current value of a parameter.

cPara is a null-terminated string with the variable.

cValue is an empty, null-terminated string for returning the parameter value. The string
should be able to hold at least 128 characters.

iReaderHnd is the handle for the Reader object.

Variables The variables are: PortHnd10, LogProt, LogFile, LogFilename, RecBusAdr, Language,
ChkRecBusAdr, ConvHexToString, SendStr, RecStr, IsProtToAppLocked and
FrameSupport

Cross-reference For more information see: 5.7.9. FEISC_SetReaderPara and 6.2. List of variables

Return value If no error the function returns a value of 0, and in case of error a value less than zero.

A list of error codes can be found in the Appendix.

Example ...
#include "feisc.h"
...
...
char cValue[128];
int iPortHnd;
...
if(!FEISC_GetReaderPara(handle, "PortHnd", cValue))
 {
 // Convert Char to Integer
 iPortHnd = atoi(cValue);
 // here for example code for using the PortHandle
 ...
 }
...
...
}

10 Note here the remarks concerning the PortHandle in 5.7.2. FEISC_NewReader

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 46 (of 123) H9391-41e-ID-B.doc

5.7.9. FEISC_SetReaderPara

Function Sets a Reader object parameter to a new value.

Syntax int FEISC_SetReaderPara(int iReaderHnd, char* cPara, char* cValue)

Description The function gives a new parameter to a Reader object. The Reader object stores the
new value and immediately turns it into the current parameter.

cPara is a null-terminated string with the variable.

cValue is a null-terminated string with the new parameter value.

iReaderHnd is the handle for the Reader object.

Variables The variables are: PortHnd11, LogProt, LogFile, LogFilename, Language,
ChkRecBusAdr, ConvHexToString, LockProtToApp, UnlockProtToApp and
FrameSupport

Cross-reference For more information see: 5.7.8. FEISC_GetReaderPara and 6.2. List of variables

Return value If the Reader object with the new parameter value was successfully (error-free) installed,
a 0 is returned. In case of error, the function returns a value less than zero.

A list of error codes can be found in the Appendix.

Example
// the example shows that a new PortHandle can be assigned to a Reader object after the fact.
// after this assignment, communication is through the new port .
...
#include "feisc.h"
#include "fecom.h"
...
...
int iErr;
char cPortHnd[9];
char cPortNr[4];
itoa(1, cPortNr, 10); // Convert Integer to Char
...
int iPortHnd = FECOM_OpenPort(cPortNr); // COM:1 should be opened
if(iPortHnd > 0)
{ itoa(iPortHnd, cPortHnd, 10); // Convert Integer to Char
 iErr = FEISC_SetReaderPara(iReaderHnd, "PortHnd", cPortHnd);
 // from here on communication through the new port is possible
 ...
}
...
...

11 Note here the remarks concerning the PortHandle in 5.7.2. FEISC_NewReader

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 47 (of 123) H9391-41e-ID-B.doc

5.7.10. FEISC_AddEventHandler

Function Installs an event handling mechanism

Syntax int FEISC_AddEventHandler(int iReaderHnd, FEISC_EVENT_INIT* pInit)

Description The function installs one of four possible event handling methods. This method is used
when an event occurs for which the method was installed. This allows asynchronous
response to events in an application program.

The event handling method is established only for the port identified by iReaderHnd.
This means that if necessary you may have to repeat this installation for each Reader
object.

 Event Description

 FEISC_PRT_EVENT One event each for the send and receive protocol 12
 FEISC_SNDPRT_EVENT Event for send protocol 10

 FEISC_RECPRT_EVENT Event for receive protocol 10

 FEISC_SCANNER_EVENT Event for received protocol when reader in scan mode13
(no support in Linux)

 1st Method: Message to thread (not for Linux, Mac OS X)
This method is used for exchanging messages between threads 14. The thread uses the
Windows-API function GetCurrentThreadID() to get the thread identifier and transfers
this as the parameter dwThreadID in the FEISC_EVEN_INIT structure.
The thread must provide a message handling function for receiving the message that
was sent by FEISC with the Windows-API function PostThreadMessage(..). The
message code is freely selectable.
The FEISC_EVENT_INIT structure is filled as follows:

uiFlag = FEISC_THREAD_ID
uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg = WM_USER + ... // freely selectable, but higher than WM_USER 15
dwThreadID = GetCurrentThreadID()

The MessageMap function in the application is given in the 1st parameter (WPARAM)
the pointer to the string and in the 2nd parameter the status byte of the receive protocol.
Note that the string pointer is cast with int, so that it needs to be converted back using
the cast operator (LPCTSTR) when allocating to a CString data type or (char*) when
allocating to a C-String.

2nd Method: Message to window (not for Linux, Mac OS X)
This method is used when the message needs to be sent directly to a window. The
corresponding window uses the Windows-API function GetWindow (..)16 to get the

12 Event is only generated if the parameter LogProt is set to 1 (default: 0)
13 See description to parameter ConvHexToString in: 6.2. List of variables
14 Parallel execution path independent of the application program. The application program itself is a thread.
15 See Windows documentation for the SDK platform
16 When using MFC CWnd you can also use the GetSafeHwnd() method

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 48 (of 123) H9391-41e-ID-B.doc

handle and transfer it as the parameter hwndWnd in the FEISC_EVENT_INIT structure.
The window must provide a message handling function for receiving the message that
was sent by FEISC with the Windows-API function PostMessage(..). The message code
is freely selectable.
The FEISC_EVENT_INITstructure is filled as follows:

uiFlag = FEISC_WND_HWND
uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg = WM_USER + ... // freely selectable, but higher than WM_USER 17
hwndWnd = GetWindow(...)

The MessageMap function gets the same parameters as in the first method.

3rd method: Invoking the first callback function (not for Mac OS X)
The first callback method installs a function pointer for an event. When the event occurs,
FEISC calls the function. The contents of the function can be freely determined. The
transfer parameters are described above for the 1st method.
The FEISC_EVENT_INIT structure is filled as follows:

uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg not needed
uiFlag = FEISC_CALLBACK
cbFct = (void*)&YourFunctionName18

4th method: Invoking the second callback function (not for Linux, Mac OS X)
The second callback method installs a function pointer for an event. When the event
occurs, FEISC calls the function. The contents of the function can be freely determined.
The transfer parameters are as follows:

BSTR - pointer to a Unicode string
int - number of characters in string
int - statusbyte or errorcode

The FEISC_EVENT_INIT structure is filled as follows:
uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg not needed
uiFlag = FEISC_CALLBACK_2
cbFct2 = (void*)&YourFunctionName19

5th method: Invoking the fourth callback function
The fourth callback method (third is not public) installs a function pointer for an event.
When the event occurs, FEISC calls the function. The contents of the function can be
freely determined. The transfer parameters are as follows:
The FEISC_EVENT_INIT structure is filled as follows:

uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg not needed
uiFlag = FEISC_CALLBACK_4
pAny = this // pointer to anything, which is reflected as the first parameter
 // in the callback function (e.g. can be used to pass the object pointer)
cbFct4 = (void*)&YourFunctionName20

17 See Windows documentation for the SDK platform
18 The function has the prototype: void YourFunctionName(int, int)
19 The function has the prototype: void YourFunctionName(BSTR, int, int)
20 The function has the prototype: void YourFunctionName(void*, const char*, int)

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 49 (of 123) H9391-41e-ID-B.doc

6th method: Setting an event (not for Linux, Mac OS X)
With the event method an event handle is installed for an event. When an event occurs,
FEISC sets the event with the Windows-API function SetEvent(…). On the application
side you wait for the event with the Windows-API function WaitForSingleObject(…).
Since no parameters can be received, you must query the desired parameter with an
appropriate function. The set event must be reset again by the application program with
the Windows-API function ResetEvent(…).
The FEISC_EVENT_INIT structure is filled as follows:

uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg not needed
uiFlag = FEISC_EVENT
hEvent = CreateEvent(..)

An installed event handling method can only be deleted using the function
FEISC_DelEventHandler.

When removing a Reader object, all event handling methods installed for that object are
lost.

Cross-reference For more information see: 5.5. Event flagging to applications and 6.3. List of constants
for the FEISC_EVENT_INIT structure

Return value If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 50 (of 123) H9391-41e-ID-B.doc

5.7.11. FEISC_DelEventHandler

Function Deletes an event handling mechanism

Syntax int FEISC_DelEventHandler(int iReaderHnd, FEISC_EVENT_INIT* pInit)

Description The function deletes an event handling mechanism which was previously installed using
FEISC_AddEventHandler. The FEISC_EVENT_INIT structure is where you specify in
detail the event handling mechanism to be deleted.

Deleting the 1st method: Message to Thread (not for Linux, Mac OS X)
The FEISC_EVENT_INIT structure is filled as follows:

uiFlag = FEISC_THREAD_ID
uiUse = FEISC_xyz_EVENT // see Defines in FEISC.H
uiMsg is not needed
dwThreadID = GetCurrentThreadID()

Deleting the 2nd method: Message to Window (not for Linux, Mac OS X)
The FEISC_EVENT_INIT structure is filled as follows:

uiFlag = FEISC_WND_HWND
uiUse = FEISC_xyz_EVENT // see Defines in FEISC.H
uiMsg is not needed
hwndWnd = GetWindow(...)

Deleting the 3rd method: Invoking the first callback function (not for Mac OS X)
The FEISC_EVENT_INIT structure is filled as follows:

uiFlag = FEISC_CALLBACK
uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg is not needed
cbFct2 = (void*)&YourFunctionName

Deleting the 4th method: Invoking the second callback function (not for Linux, Mac OS X)
The FEISC_EVENT_INIT structure is filled as follows:

uiFlag = FEISC_CALLBACK_2
uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg is not needed
cbFct4 = (void*)&YourFunctionName

Deleting the 5th method: Setting an event (not for Linux, Mac OS X)
The FEISC_EVENT_INIT structure is filled as follows:

uiFlag = FEISC_EVENT
uiUse = FEISC_xyz_EVENT // see Defines FEISC.H
uiMsg is not needed
hEvent = hYourEventHandle

Cross-reference For more information see:5.5. Event flagging to applications, 5.7.10.
FEISC_AddEventHandler and 6.3. List of constants for the FEISC_EVENT_INIT
structure.

Return value If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 51 (of 123) H9391-41e-ID-B.doc

5.7.12. FEISC_StartAsyncTask

Function An inventory or notification task is started asynchronous to the application

Syntax int FEISC_StartAsyncTask(int iReaderHnd, int iTaskID, FEISC_TASK_INIT* pInit,
void* pInput)

Description This function starts an asynchronous task. An asynchronous task is an internal thread
which e.g. sends an inventory command to the reader and waits for the reply for a time
up to the timeout. Signaling of the reply data or the cancel condition to the application is
done by invoking a callback function.

The task behavior is specified in the parameter iTaskID. Three tasks are currently
defined:

FEISC_TASKID_FIRST_NEW_TAG starts a one-time inventory task

FEISC_TASKID_EVERY_NEW_TAG starts a repeating inventory task

FEISC_TASKID_NOTIFICATION starts a task prepared for receiving
notifications

FEISC_TASKID_SAM_COMMAND starts a one-time task for receiving SAM
response

FEISC_TASKID_COMMAND_QUEUE starts a one-time task for receiving Queue
Command response

FEISC_TASKID_MAX_EVENT starts a task prepared for receiving Access
notifications

FEISC_TASKID_PEOPLE_COUNTER starts a task prepared for receiving
Counter notifications

All the data relevant to the callback function are contained in the structure
FEISC_TASK_INIT. This structure is described in greater detail in section 5.4.
Asynchronous tasks for relieving the load on applications.

Important Note: the structure FEISC_TASK_INIT must always be initialized on
application-side with 0 with a call of memset(myTaskInit, 0, sizeof(FEISC_TASK_INIT));

The last parameter pInput is not currently considered. You should always send NULL
(vbNull).

iReaderHnd is the handle for the reader object.

Cross-
references

Additional information about asynchronous tasks can be found in the section 5.4.
Asynchronous tasks for relieving the load on applications.

5.7.13. FEISC_CancelAsyncTask

5.7.14. FEISC_TriggerAsyncTask

Note Asynchronous inventory tasks use protocol [0xB0][0x01] Inventory with the NOTIFY
option in the mode byte. Readers not supporting this option can not be used for
asynchronous tasks.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 52 (of 123) H9391-41e-ID-B.doc

More detailed information about the protocol [0xB0][0x01] Inventory can be found in the
manual for the OBID i-scan® or OBID® classic-pro Reader family.

Return value In case of no error a 0 is returned. A value less than 0 indicates an error.

The list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 53 (of 123) H9391-41e-ID-B.doc

5.7.13. FEISC_CancelAsyncTask

Function Cancels an inventory or notification task.

Syntax int FEISC_CancelAsyncTask(int iReaderHnd)

Description This function cancels an asynchronous task.

You should not normally use one-time inventory (started with TaskID =
FEISC_TASKID_FIRST_NEW_TAG) to quit this function. You should end repeating
inventory (started with TaskID = FEISC_TASKID_EVERY_NEW_TAG) using this
function if the callback function was ended and the internal thread is waiting for the next
trigger. This ensures that the task in the Reader is ended and it can again process
reader tasks.

Notification tasks must always be canceled with this function.

The cancellation of the task is locked if the task execution is just inside the callback
function. This prevents deadlocks. In this case this funktion returns directly with the
return value FEISC_ERR_TASK_BUSY (-4084) and the application must invoke
FEISC_CancelAsyncTask until the return value is not -4084. On application-side the
return from the callback function must be guaranteed.

iReaderHnd is the handle for the reader object.

Cross-
references

Additional information about asynchronous tasks can be found in the section 5.4.
Asynchronous tasks for relieving the load on applications.

5.7.12. FEISC_StartAsyncTask

5.7.14. FEISC_TriggerAsyncTask

Return value In case of no error a 0 is returned. A value less than 0 indicates an error.

The list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 54 (of 123) H9391-41e-ID-B.doc

5.7.14. FEISC_TriggerAsyncTask

Function Triggers the next cycle in the inventory task.

Syntax int FEISC_TriggerAsyncTask(int iReaderHnd)

Description This function is used to trigger the next inventory cycle in the asynchronous task. The
asynchronous task must have been previously started with the TaskID =
FEISC_TASKID_EVERY_NEW_TAG.

This function is always invoked after the callback function has been exited. Without this
invoke a task with repeating function hangs up in a wait loop.

iReaderHnd is the handle for the reader object.

Cross-
references

Additional information about asynchronous tasks can be found in the section 5.4.
Asynchronous tasks for relieving the load on applications.

5.7.12. FEISC_StartAsyncTask

5.7.13. FEISC_CancelAsyncTask

Return value In case of no error a 0 is returned. A value less than 0 indicates an error.

The list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 55 (of 123) H9391-41e-ID-B.doc

5.7.15. FEISC_BuildSendProtocol

Function The transmitted parameters and data are used to build a send protocol with a protocol
frame.

Syntax int FEISC_BuildSendProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR
cCmdByte, UCHAR* cSendData, int iDataLen, UCHAR* cSendProt, int iDataFormat
)

Description This function uses the transmitted parameters bus address (cBusAdr), command byte
(cCmdByte), send data (cSendData) and the information about the length of the send
data (iDataLen) to build a complete send protocol with protocol frame. The protocol
string is stored in cSendProt as a hex array (iDataFormat=0) or string (iDataFormat=1).
The buffer for cSendProt must be longer by a factor of one than the expected protocol
length, since a NUL character is appended.

For more information about the protocol frame, see the system manual for the ISC
Reader family.

iReaderHnd is the handle for the Reader object.

The constructed protocol is not passed along to a port driver (like FECOM).

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Note This function does not yet support the USB protocols.

Return value In case of no errors the length of cSendProt is indicated in the return value. In case of
errors a negative value is returned.

A list of error codes can be found in the Appendix.

Example ...
int BuildTestProtocol(int iReaderHnd)
{
 int iErr, iDataLen;
 UCHAR cSendData[32], cSendProt[256];
 UCHAR cBusAdr = 0xFF;
 UCHAR cCmdByte= 0x6A;
 ...
 cSendData[0] = 0x01;
 cSendData[1] = '\0';
 iDataLen = 1;

 // Build send protocol
 iErr = FEISC_BuildProtocol(iReaderHnd, cBusAdr, cCmdByte, cSendData, iDataLen,
 cSendProt, 0);
...
}

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 56 (of 123) H9391-41e-ID-B.doc

5.7.16. FEISC_BuildRecProtocol

Function The transmitted parameters and data are used to build a receive protocol with a protocol
frame.

Syntax int FEISC_BuildRecProtocol(int iReaderHnd, UCHAR cBusAdr, UCHAR
cCmdByte, UCHAR cStatus, UCHAR* cRecData, int iDataLen, UCHAR* cRecProt,
int iDataFormat)

Description This function uses the transmitted parameters bus address (cBusAdr), command byte
(cCmdByte), status byte (cStatus), receive data (cRecData) and the information about
the length of the receive data (iDataLen) to build a complete receive protocol with
protocol frame. The protocol string is stored in cRecProt as a hex array (iDataFormat=0)
or string (iDataFormat=1). The buffer for cRecProt must be longer by a factor of one
than the expected protocol length, since a NUL character is appended.

For more information about the protocol frame, see the system manual for the OBID i-
scan® or OBID® classic-pro Reader family.

iReaderHnd is the handle for the Reader object.

The constructed protocol is not passed along to a port driver (like FECOM).

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Note This function does not yet support the USB protocols.

Return value In case of no errors the length of cRecProt is indicated in the return value. In case of
errors a negative value is returned.

A list of error codes can be found in the Appendix.

Example Ananlog zu FEISC_BuildSendProt

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 57 (of 123) H9391-41e-ID-B.doc

5.7.17. FEISC_SplitSendProtocol

Function Splits the transmitted protocol string.

Syntax int FEISC_SplitSendProtocol(int iReaderHnd, UCHAR* cSendProt, int iSendLen,
UCHAR* cBusAdr, UCHAR* cCmdByte, UCHAR* cSendData, int* iDataLen, int
iDataFormat)

Description This function splits the data contained in cSendProt into bus address (cBusAdr),
command byte (cCmdByte), send data (cSendData) and the information about the
length of the send data (iDataLen). The protocol string in cSendProt must be transmitted
as a hex array (iDataFormat=0) or string (iDataFormat=1) with a length indication in
iSendLen.

cSendData is interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

For more information about the protocol frame, see the system manual for the OBID i-
scan® or OBID® classic-pro Reader family.

iReaderHnd is the handle for the Reader object.

This function depends not of a port driver (like FECOM).

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Note This function does not yet support the USB protocols.

Return value If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

Example Analog to FEISC_SplitRecProt

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 58 (of 123) H9391-41e-ID-B.doc

5.7.18. FEISC_SplitRecProtocol

Function Splits the transmitted protocol string.

Syntax int FEISC_SplitRecProtocol(int iReaderHnd, UCHAR* cRecProt, int iRecLen,
UCHAR* cBusAdr, UCHAR* cCmdByte, UCHAR* cRecData, int* iDataLen, int
iDataFormat)

Description This function splits the data contained in cRecProt into bus address (cBusAdr),
command byte (cCmdByte), receive data (cRecData) and the information about the
length of the receive data (iDataLen). The protocol string in cRecProt must be
transmitted as a hex array (iDataFormat=0) or string (iDataFormat=1) with a length
indication in iRecLen.

cRecData is interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

For more information about the protocol frame, see the system manual for the ISC
Reader family.

iReaderHnd is the handle for the Reader object.

This function depends not of a port driver (like FECOM).

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Note This function does not yet support the USB protocols.

Return value In case of no errors the status byte of the receive protocol is returned. A value greater
than 0x00 indicates an exception condition for the reader.

A list of error codes can be found in the Appendix.

Example
// the following code fragment presupposes initialized port and Reader objects.
#include "feisc.h"
#include "fecom.h"
...
 int iStatus, iRecLen;
 UCHAR cBusAdr, cCmdByte;
 UCHAR cSendProt[256], cRecProt[256], cRecData[256];
 int iDataLen = 0;
 // Build send protocol
 FEISC_BuildProtocol(iReaderHnd, cBusAdr, cCmdByte, cSendData, cDataLen,
 cSendProt, 0);
 // Send and receive protocol
 iRecLen = FECOM_Transceive(iPortHnd, cSendProt, cSendProt[0], cRecProt, 256);
 if(iRecLen > 0)
 { // Split receive protocol
 iStatus = FEISC_SplitProtocol(iReaderHnd, cRecProt, iRecLen,
 &cBusAdr, &cCmdByte, cRecData, &iDataLen, 0);
 if(iStatus == 0) // Statusbyte == 0x00
 { // Process receive data
 ...
 }
 }

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 59 (of 123) H9391-41e-ID-B.doc

5.7.19. FEISC_SendTransparent

Function Outputs a protocol string directly over the interface; the receive protocol is returned.

Syntax int FEISC_SendTransparent(int iReaderHnd, UCHAR* cSendProt, int iSendLen,
UCHAR* cRecProt, int iMaxRecLen, int iCheckSum, int iDataFormat)

Description This function can be used to send protocol strings created using editors to a Reader.
This presupposes thorough knowledge of protocol frames.

The protocol with protocol frame contained in cSendProt is optionally expanded with the
checksum (iCheckSum = 1) and the receive protocol is stored in cRecProt. Both buffers
should be interpreted as hex array (iDataFormat=0) or string (iDataFormat=1).

The length of the protocol (number of characters in cSendProt) must be indicated in the
iSendLen parameter.

The receive protocol buffer should as a precaution be able to hold 256 characters
(iDataFormat=0) or 512 characters (iDataFormat=1). This buffer size must be indicated
in iMaxRecLen.

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Note This function supports all FEIG port drivers.

Return value In case of no errors the number of characters contained in cRecProt is sent.

A list of error codes can be found in the Appendix.

Example int outLen, inLen;
 UCHAR cSendProt[256];
 UCHAR cRecProt[256];
 ...
 // Define send protocol
 cSendProt[0] = 0x06; // Length byte
 cSendProt[1] = 0xFF; // Address byte
 cSendProt[2] = 0x80; // Control byte
 cSendProt[3] = 0x00; // Configuration address in Reader
 outLen = 4;
 ...
 // Send protocol, first calculating and appending checksum
 inLen = FEISC_SendTransparent(iReaderHnd, cSendProt, outLen, cRecProt, 256, 1, 0);
 if(inLen > 0)
 { // starting here code for processing the receive data
 ...
 }

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 60 (of 123) H9391-41e-ID-B.doc

5.7.20. FEISC_Transmit

Function Outputs a protocol string directly over the interface.

Syntax int FEISC_Transmit(int iReaderHnd, UCHAR* cSendProt, int iSendLen, int
iCheckSum, int iDataFormat)

Description This function can be used to send protocol string created using editors to a Reader. This
presupposes thorough knowledge of protocol frames.

There is no waiting for a reply protocol after sending the cSendProt protocol.

The protocol with protocol frame contained in cSendProt is optionally expanded with the
checksum (iCheckSum = 1) and the receive protocol is stored in cRecProt. Both buffers
should be interpreted as hex array (iDataFormat=0) or string (iDataFormat=1).

The length of the protocol (number of characters in cSendProt) must be indicated in the
iSendLen parameter. If iDataFormat=1, then iSendLen is twice as large as in the case of
iDataFormat=0.

iReaderHnd is the handle for the Reader object.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Note This function supports all FEIG port drivers.

Return value In case of error a 0 is transferred.

A list of error codes can be found in the Appendix.

Example int outLen;
UCHAR cSendProt[256];
...
// Define send protocol
cSendProt[0] = 0x06; // Length byte
cSendProt[1] = 0xFF; // Address byte
cSendProt[2] = 0x80; // Command byte for Read Configuration
cSendProt[3] = 0x00; // Configuration address in Reader
outLen = 4;
// Send protocol, first calculating and appending checksum
FEISC_Transmit(iReaderHnd, cSendProt, outLen, 1, 0);
...

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 61 (of 123) H9391-41e-ID-B.doc

5.7.21. FEISC_Receive

Function Receives a protocol string directly from the interface.

Syntax int FEISC_Receive(int iReaderHnd, UCHAR* cRecProt, int iRecLen, int
iDataFormat)

Description This function reads a protocol directly out of the receive buffer and stores it in cRecProt.
If an ISC Reader has already send several protocols, the function reads in all the
protocols. In this case cRecProt contains all protocols.

A maximum of 256 ASCII characters can be taken from the receive buffer.

The receive protocol buffer should as a precaution be able to hold 256 characters
(iDataFormat=0) or 512 characters (iDataFormat=1). This buffer size must be indicated
in iRecLen.

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Note This function supports all FEIG port drivers.

Return value In case of no errors the number of characters contained in cRecProt is transmitted. If
iDataFormat=1, then iSendLen is twice as large as in the case of iDataFormat=0.

A list of error codes can be found in the Appendix.

Example int inLen;
UCHAR cRecProt[256];
...
// Receive protocol
inLen = FEISC_Receive(iReaderHnd, cRecProt, 256, 0);
...

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 62 (of 123) H9391-41e-ID-B.doc

5.7.22. FEISC_GetLastSendProt

Function Returns the last send protocol string.

Syntax int FEISC_GetLastSendProt(int iReaderHnd, UCHAR* cSendProt, int iDataFormat
)

Description This function can be used to get the last sent send protocol from a Reader object. All
functions which begin with FEISC_0x… as well as the function
FEISC_SendTransparent store this protocol in the Reader object.

The send protocol buffer cSendProt should as a precaution be able to hold 256
characters (iDataFormat=0) or 512 characters (iDataFormat=1). cSendProt should be
interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value In case of no errors the return value contains the number of characters contained in
cSendProt.

A list of error codes can be found in the Appendix.

5.7.23. FEISC_GetLastRecProt

Function Returns the last received protocol string.

Syntax int FEISC_GetLastRecProt(int iReaderHnd, UCHAR* cRecProt, int iDataFormat)

Description This function can be used to get the last receive protocol from a Reader object. All
functions which begin with FEISC_0x… as well as the function
FEISC_SendTransparent store this protocol in the Reader object.

The receive protocol buffer cRecProt should as a precaution be able to hold 256
characters (iDataFormat=0) or 512 characters (iDataFormat=1). cRecProt should be
interpreted as a hex array (iDataFormat=0) or string (iDataFormat=1).

The buffer must be increased for Advanced Protocol Frames.

iReaderHnd is the handle for the Reader object.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value In case of no errors the return value contains the number of characters contained in
cRecProt.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 63 (of 123) H9391-41e-ID-B.doc

5.7.24. FEISC_GetLastState

Function Returns the status byte contained in the last receive protocol.

Syntax int FEISC_GetLastStatus(int iReaderHnd, char* cStatusText)

Description This function can be used to get the status byte from a Reader object and a short text
for the status byte of the last receive protocol. All functions which begin with
FEISC_0x… as well as the function FEISC_SendTransparent store this protocol in the
Reader object.

The buffer for the short text cStateText should be able to hold at least 256 characters.

iReaderHnd is the handle for the Reader object.

Return value In case of no errors the return value contains the status byte.

A list of error codes can be found in the Appendix.

5.7.25. FEISC_GetLastRecProtLen

Function Gets the length of the last receive protocol.

Syntax int FEISC_GetLastRecProtLen(int iReaderHnd)

Description Sometimes it is helpful to be able to get the length of the data contained in it from the
protocol length. This protocol length is what this function gets.

Example: The function FEISC_0x21_ReadBuffer provides some data records for a data
structure. You could get the total length of the data by analyzing the data sets, but it is
much simpler to use the protocol length and deduct 6 bytes for the protocol frame and
another 2 bytes for the parameters cTrData and cRecDataSets.

iReaderHnd is the handle for the Reader object.

Return value In case of no errors the return value contains the protocol length.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 64 (of 123) H9391-41e-ID-B.doc

5.7.26. FEISC_GetLastError

Function Gets the last error code and transmits error text.

Syntax int FEISC_GetLastError(int iReaderHnd , int* iErrorCode, char* cErrorText)

Description The function uses iErrorCode to send the last error code of the Reader object selected
withiReaderHnd and transmits the associated error text in cErrorText.

The buffer for cErrorText should be able to hold at least 256 characters.

Return value If no error the function returns zero, and in case of error a value less than zero. A list of
error codes can be found in the Appendix.

Example
...
#include "feisc.h"
...
...
char cErrorText[256];
int iErrorCode = 0;
...

int iBack = FEISC_GetLastError(iReaderHnd, &iErrorCode, cErrorText)
 // code here for displaying the text
...
...

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 65 (of 123) H9391-41e-ID-B.doc

5.7.27. FEISC_0x18_Destroy

Function Function destroys an Transponder.

Syntax int FEISC_0x18_Destroy(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode, UCHAR*
cEPC, UCHAR* cPW)

Note This function will render an Transponder permanently unable to give any replies.

cMode is the mode byte.

cEPC is a pointer to the buffer with the EPC or UID. The length of the EPC or UID is
calculated internally based on the mode byte and the EPC header.

cPW is a pointer to the buffer with the 3 byte password.

iReaderHnd ist der Handle zum Leser-Objekt.

cBusAdr ist die im multijob-Leser eingestellte Busadresse.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 66 (of 123) H9391-41e-ID-B.doc

5.7.28. FEISC_0x1A_Halt

Function Function for turning off transponders.

Syntax int FEISC_0x1A_Halt(int iReaderHnd, UCHAR cBusAdr)

Description This function turns off a previously selected transponder. The FEISC_0x69_RFReset
function can be used to reactivate all the transponders which are turned off.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.29. FEISC_0x1B_ResetQuietBit

Function Function for resetting the Quiet bit.

Syntax int FEISC_0x1B_ResetQuietBit(int iReaderHnd, UCHAR cBusAdr)

Description The function resets the Quiet bit in the transponder Type I-Code.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.30. FEISC_0x1C_EASRequest

Function Function for sending the EAS Request

Syntax int FEISC_0x1C_EASRequest(int iReaderHnd, UCHAR cBusAdr)

Description The function sends an EAS Request to the transponder Type I-Code.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 67 (of 123) H9391-41e-ID-B.doc

5.7.31. FEISC_0x1F_MAXDataExchange

Function Function for data transfer with a myAxxess Reader

Syntax int FEISC_0x1F_MAXDataExchange(int iReaderHnd, UCHAR cBusAdr, UCHAR
cSubCmd, UCHAR cMode, UCHAR cTableID, UCHAR* cReqData, int iReqDataLen, UCHAR*
cRspData, int* iRspDataLen, int iDataFormat)

Description This function realizes the read and write of all data records of different tables, identified
by cTableID, from/into a myAxxess Reader. cSubCmd contains the command byte to
define the action.

cMode contains optional flags.

The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).

All parameters are declared in detail in the system manual of the designated reader.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Note This function is a low-level function and should not be used directly for application
development. FEIG has build a more comfortable C++ Library, called FEDM, with a
high-level API for myAxxess Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 68 (of 123) H9391-41e-ID-B.doc

5.7.32. FEISC_0x21_ReadBuffer

Function Function for data transfer with a transponder

Syntax int FEISC_0x21_ReadBuffer(int iReaderHnd, UCHAR cBusAdr, UCHAR cSets, UCHAR*
cTrData, UCHAR* cRecSets, UCHAR* cRecDataSets, int iDataFormat)

Description The function reads the number of data sets cSets from the internal data table and stores
the data in cRecDataSets.

cTrData defines the structure of a data set in cRecDataSets.

The number of returned data sets in cRecDataSets is indicated in cRecSets.

The parameter iDataFormat determines whether the receive data in cRecDataSets are
to be interpreted as a hex array or as a string. cRecSets and cTrData always consist of
1 hex character.

The cRecDataSets buffer should be dimensioned as follows:
• iDataFormat=0: 256 characters (incl. 1 NUL character)
• iDataFormat=1: 512 characters (incl. 1 NUL character)

The data contained in cRecDataSets are inserted in the order described in the system
manual for the OBID i-scan® family.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Note The function does not check the data in cRecDataSets based on the data structure
indicated in cTrData.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

FEISC_0x33_InitBuffer, FEISC_0x31_ReadDataBufferInfo,
FEISC_0x32_ClearDataBuffer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 69 (of 123) H9391-41e-ID-B.doc

5.7.33. FEISC_0x22_ReadBuffer

Function Function for data transfer with a transponder

Syntax int FEISC_0x22_ReadBuffer(int iReaderHnd, UCHAR cBusAdr, int iSets, UCHAR*
cTrData, int* iRecSets, UCHAR* cRecDataSets, int iDataFormat)

Description The function reads the number of data sets iSets from the internal data table and stores
the data in cRecDataSets.

cTrData defines the structure of a data set in cRecDataSets.

The number of returned data sets in cRecDataSets is indicated in iRecSets.

The parameter iDataFormat determines whether the receive data in cRecDataSets are
to be interpreted as a hex array or as a string. cRecSets and cTrData always consist of
1 hex character.

The cRecDataSets buffer should be dimensioned for containing all Transponder data. If
iDataFormat=1, then the buffer cRecDataSets must be redoubled.

The data contained in cRecDataSets are inserted in the order described in the system
manual for the OBID i-scan® family.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Note The function does not check the data in cRecDataSets based on the data structure
indicated in cTrData.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

FEISC_0x33_InitBuffer, FEISC_0x31_ReadDataBufferInfo,
FEISC_0x32_ClearDataBuffer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 70 (of 123) H9391-41e-ID-B.doc

5.7.34. FEISC_0x31_ReadDataBufferInfo

Function Function gets table parameters for the internal data buffer.

Syntax int FEISC_0x31_ReadDataBufferInfo(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cTabSize, UCHAR* cTabStart, UCHAR* cTabLen, int iDataFormat)

Description The function reads the table parameters from the internal buffer table and stores them in
cTabSize , cTabStart and cTabLen.

The parameter iDataFormat determines whether the table parameters are to be
interpreted as a hex array or as a string.

The cTabSize , cTabStart and cTabLen buffers must be dimensioned as follows:
• iDataFormat=0: 3 Characters (incl. 1 NUL character)
• iDataFormat=1: 5 Characters (incl. 1 NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

FEISC_0x21_ReadBuffer, FEISC_0x22_ReadBuffer, FEISC_0x33_InitBuffer,
FEISC_0x32_ClearDataBuffer,

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.35. FEISC_0x32_ClearDataBuffer

Function Function clears entries read from the internal data buffer.

Syntax int FEISC_0x32_ClearDataBuffer(int iReaderHnd, UCHAR cBusAdr)

Description The function clears the entries read out from the Reader-internal data buffer by
FEISC_0x21_ReadBuffer.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the multijob-Reader.

Cross-reference FEISC_0x21_ReadBuffer, FEISC_0x22_ReadBuffer, FEISC_0x33_InitBuffer,
FEISC_0x31_ReadDataBufferInfo

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 71 (of 123) H9391-41e-ID-B.doc

5.7.36. FEISC_0x33_InitBuffer

Function Function for initializing the Reader-internal data table.

Syntax int FEISC_0x33_InitBuffer(int iReaderHnd, UCHAR cBusAdr)

Description The function initializes the internal data table for the Buffered Read Mode.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference FEISC_0x21_ReadBuffer, FEISC_0x21_ReadBuffer,
FEISC_0x31_ReadDataBufferInfo

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.37. FEISC_0x34_ForceNotifyTrigger

Function Function to trigger a notification

Syntax int FEISC_0x34_ForceNotifyTrigger(int iReaderHnd, UCHAR cBusAdr, UCHAR ucMode
)

Description This function triggers at once a notification, which transfers data records from the
internal Buffered Read Mode table to the Host. The function returns immediately after
the execution and in front of the notification.

This function is only usefull, if a background task is prepated with
FEISC_StartAsyncTask to receive notifications.

The parameter ucMode is actually unused and should be contain 0x00.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference 5.4. Asynchronous tasks for relieving the load on applications

5.7.12. FEISC_StartAsyncTask

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 72 (of 123) H9391-41e-ID-B.doc

5.7.38. FEISC_0x52_GetBaud

Function Test function for getting baud rate and parity.

Syntax int FEISC_0x52_GetBaud(int iReaderHnd, UCHAR cBusAdr)

Description If the reply telegram can be received, the configured baud rate and parity are the same
as for the Reader.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.39. FEISC_0x55_StartFlashLoader

Function The function starts the flash loader.

Syntax int FEISC_0x55_StartFlashLoader(int iReaderHnd)

Description The function starts the Reader flash loader. The Reader must have bus address 0.

iReaderHnd is the handle for the Reader object.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.40. FEISC_0x55_StartFlashLoaderEx

Function The function starts the flash loader.

Syntax int FEISC_0x55_StartFlashLoaderEx(int iReaderHnd, UCHAR cBusAdr)

Description The function starts the Reader flash loader. This advanced function supports any
busaddress.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 73 (of 123) H9391-41e-ID-B.doc

5.7.41. FEISC_0x63_CPUReset

Function Function initiates a reset in the Reader’s CPU

Syntax int FEISC_0x63_CPUReset(int iReaderHnd, UCHAR cBusAdr)

Description Function initiates a reset in the Reader’s CPU

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.42. FEISC_0x64_SystemReset

Function Function initiates a reset in a part of the Reader.

Syntax int FEISC_0x64_SystemReset(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode)

Note Function initiates a reset in a part of the Reader

cMode defines the Controller to be reset.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 74 (of 123) H9391-41e-ID-B.doc

5.7.43. FEISC_0x65_SoftVersion

Function Function reads out the Reader version number.

Syntax int FEISC_0x65_SoftVersion(int iReaderHnd, UCHAR cBusAdr, UCHAR* cVersion,
int iDataFormat)

Description The Reader version number is gotten and stored in cVersion.

The parameter iDataFormat specifies whether the version number in cVersion is to be
interpreted as a hex array or as a string.

The buffer for the version must be able to hold at least 8 bytes (iDataFormat=0) or 15
bytes (iDataFormat=1). One byte is intended for the NUL character.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.44. FEISC_0x66_ReaderInfo

Function Function reads out informations of a part of the Reader.

Syntax int FEISC_0x66_ReaderInfo(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode,
UCHAR* cInfo, int iDataFormat)

Description The information of a part of the Reader is gotten and stored in cInfo.

cMode defines the part of the Reader.

The parameter iDataFormat specifies whether the information in cInfo is to be
interpreted as a hex array or as a string.

The buffer for cInfo must be able to hold all bytes. One byte is intended for the NUL
character. For detailed informations, please refer to the system manual of the OBID i-
scan® family

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 75 (of 123) H9391-41e-ID-B.doc

5.7.45. FEISC_0x69_RFReset

Function Function initiates a reset for the antenna field.

Syntax int FEISC_0x69_RFReset(int ReaderHnd, UCHAR cBusAdr)

Description Function initiates a reset for the Reader’s antenna field. All transponders previously
turned off by FEISC_0x1A_Halt are reactivated.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.46. FEISC_0x6A_RFOnOff

Function Function for turning the antenna field on/off.

Syntax int FEISC_0x6A_RFOnOff(int iReaderHnd, UCHAR cBusAdr, UCHAR cRF)

Description A 0 in cRF turns the antenna field off.

A 1 in cRF turns the antenna field on.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 76 (of 123) H9391-41e-ID-B.doc

5.7.47. FEISC_0x6B_CentralizedRFSync

Function Function to synchronize antennas.

Syntax int FEISC_0x6B_CentralizedRFSync (int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cTxChannel, int iTxPeriod, UCHAR cRes1, UCHAR cRes2)

Description The parameters are described in the system manual of the reader.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 77 (of 123) H9391-41e-ID-B.doc

5.7.48. FEISC_0x6C_SetNoiseLevel

Function Function for setting the noise level.

Syntax int FEISC_0x6C_SetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cLevel, int iDataFormat)

Description cLevel contains the 3 level values which are sent as a hex array with a total of 6 bytes
(iDataFormat=0) or as a string with a total of 12 bytes (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.49. FEISC_0x6D_GetNoiseLevel

Function Function for getting the noise level.

Syntax int FEISC_0x6D_GetNoiseLevel(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cLevel, int iDataFormat)

Description The 3 level values are stored in cLevel.

The buffer for cLevel must be dimensioned as follows:
1. iDataFormat=0: 7 bytes (incl. NUL character)
2. iDataFormat=1: 13 bytes (incl. NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 78 (of 123) H9391-41e-ID-B.doc

5.7.50. FEISC_0x6E_RdDiag

Function Function for Reader diagnostics.

Syntax int FEISC_0x6E_RdDiag(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode,
UCHAR* cData)

Description The function returns diagnostics values for the handle stored in cMode.

The buffer for the receive data cData must be sufficiently dimensioned.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.51. FEISC_0x6F_AntennaTuning

Function Function enables a special mode in the reader.

Syntax int FEISC_0x6F_AntennaTuning(int ReaderHnd, UCHAR cBusAdr)

Description This function enables a special tuning mode in the reader. The reader must be reset for
disabling this mode.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 79 (of 123) H9391-41e-ID-B.doc

5.7.52. FEISC_0x71_SetOutput

Function Function activates the Reader’s outputs.

Syntax int FEISC_0x71_SetOutput(int iReaderHnd, UCHAR cBusAdr, int iOS, int iOSF, int
iOSTime, int iOutTime)

Description The function activates the Reader’s outputs. All times are multiplied internally in the
Reader by 100 and are to be interpreted in units of ms. The value ranges indicated in
the system manual for the ISC Reader family are applicable.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.53. FEISC_0x72_SetOutput

Function Function activates the Reader’s outputs.

Syntax int FEISC_0x72_SetOutput(int iReaderHnd, UCHAR cBusAdr, UCHAR cMode,
UCHAR cOutN, UCHAR* pRecords)

Description The function activates the Reader’s outputs. The number of outputs to be activated is
set with cOutN. The activation parameters of each output must be collected in a buffer.
pRecords is the pointer to this buffer. The parameter cMode is the mode byte of the
protocol.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 80 (of 123) H9391-41e-ID-B.doc

5.7.54. FEISC_0x74_ReadInput

Function Function reads the status of the digital inputs.

Syntax int FEISC_0x74_ReadInput(int iReaderHnd, UCHAR cBusAdr, UCHAR* cInput)

Description The function reads the digital inputs and stores the status in cInput. The length of cInput
is 1.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.55. FEISC_0x75_AdjAntenna

Function Function for reading the antenna level.

Syntax int FEISC_0x75_AdjAntenna(int iReaderHnd, UCHAR cBusAdr, UCHAR* cLevel,
int iDataFormat)

Description The read level value is stored in cLevel.

The buffer for cLevel must be dimensioned as follows:
3. iDataFormat=0: 3 bytes (incl. NUL character)
4. iDataFormat=1: 5 bytes (incl. NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 81 (of 123) H9391-41e-ID-B.doc

5.7.56. FEISC_0x76_CheckAntennas

Function Function for detecting antennas.

Syntax int FEISC_0x76_CheckAntennas(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR* cAntOut, int* iAntOutLen)

Description cMode is for future use.

cAntOut contains flag fields with one flag for each detected antenna. iAntOutLen returns
the number of bytes in cAntOut. A maximum of 5 bytes is possible. Thus, the buffer for
cAntOut must be dimensioned for 5 bytes..

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 82 (of 123) H9391-41e-ID-B.doc

5.7.57. FEISC_0x80_ReadConfBlock

Function Function reads a configuration block from the Reader.

Syntax int FEISC_0x80_ReadConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr, UCHAR* cConfBlock, int iDataFormat)

Description This function allows you to read a configuration block from address cConfAdr of the
Reader. The data read out in cConfBlock are to be interpreted as a hex array
(iDataFormat=0) or as a string (iDataFormat=1).

The buffer for the configuration data cConfBlock must be dimensioned as follows:
1. iDataFormat=0: 15 bytes (incl. 1 NUL character)
2. iDataFormat=1: 29 bytes (incl. 1 NUL character)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.58. FEISC_0x81_WriteConfBlock

Function Function writes a configuration block to the Reader.

Syntax int FEISC_0x81_WriteConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr, UCHAR* cConfBlock, int iDataFormat)

Description This function lets you write a configuration block to address cConfAdr of the Reader.
The configuration data must be stored in cConfBlock as a hex array (iDataFormat=0) or
string (iDataFormat=1).

The buffer with the configuration data must contain 14 bytes (iDataFormat=0) or 28
bytes (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 83 (of 123) H9391-41e-ID-B.doc

5.7.59. FEISC_0x82_SaveConfBlock

Function Function saves a configuration block in the Reader.

Syntax int FEISC_0x82_SaveConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr)

Description This function allows you to write a configuration block for address cConfAdr from RAM
memory to the EEPROM (non-volatile memory) and save it for a longer period.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.60. FEISC_0x83_ResetConfBlock

Function Function loads the factory setting into a configuration block in the Reader.

Syntax int FEISC_0x83_ResetConfBlock(int iReaderHnd, UCHAR cBusAdr, UCHAR
cConfAdr)

Description This function allows you to load the parameters for the factory default settings into a
configuration block for address cConfAdr.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 84 (of 123) H9391-41e-ID-B.doc

5.7.61. FEISC_0x85_SetSysTimer

Function Sets the system time in the Reader.

Syntax int FEISC_0x85_SetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime,
int iDataFormat)

Description The function initializes the system time in the Reader.

The buffer cTime must contain 4 bytes (iDataFormat=0) or be a string with 8 characters
(iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.62. FEISC_0x86_GetSysTimer

Function Reads the system time from the Reader.

Syntax int FEISC_0x86_GetSysTimer(int iReaderHnd, UCHAR cBusAdr, UCHAR* cTime,
int iDataFormat)

Description This function gets the system time from the Reader.

The buffer for cTime must be dimensioned as follows:
5. iDataFormat=0: 5 Characters (incl. 1 NUL character))
6. iDataFormat=1: 9 Characters (incl. 1 NUL character))

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 85 (of 123) H9391-41e-ID-B.doc

5.7.63. FEISC_0x87_SetSystemDate

Function Sets the system date and time in the Reader.

Syntax int FEISC_0x87_SetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR
cCentury, UCHAR cYear, UCHAR cMonth, UCHAR cDay, UCHAR cTimezone,
UCHAR cHour, UCHAR cMinute, int iMilliSecond)

Description The function initializes the system date and time in the Reader.
cCentury : century (e.g. 20)
cYear : year (e.g. 4)
cMonth : month (e.g. 10)
cDay : day (e.g. 5)
cTimezone : timezone (actually unused)
cHour : hour (e.g. 15)
cMinute : minute (e.g. 13)
iMilliSecond : milliseconds, containing also the seconds (e.g. 1234 for 1s and 234ms)

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

5.7.64. FEISC_0x88_GetSystemDate

Function Reads the system date and time from the Reader.

Syntax int FEISC_0x88_GetSystemDate(int iReaderHnd, UCHAR cBusAdr, UCHAR*
cCentury, UCHAR* cYear, UCHAR* cMonth, UCHAR* cDay, UCHAR* cTimezone,
UCHAR* cHour, UCHAR* cMinute, int* iMilliSecond)

Description This function gets the system date and time from the Reader.

The function parameters are described in 5.7.63. FEISC_0x87_SetSystemDate.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 86 (of 123) H9391-41e-ID-B.doc

5.7.65. FEISC_0x8A_ReadConfiguration

Function Function reads configuration blocks from the Reader.

Syntax int FEISC_0x8A_ReadConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR
cDevice, UCHAR cBank, UCHAR cMode, int iReqBlockAdr, UCHAR
cReqBlockCount, UCHAR* cRspBlockCount, UCHAR* cRspBlockSize, UCHAR*
cRspData)

Description This function allows you to read one configuration block or multiple or all configuration
blocks from address cReqBlockAdr of the Reader. The data read out in cRspData are
stored with increasing address.

The parameter cDevice identifies the controller in the Reader, cBank the configuration
memory and cMode additional options. More information can be found in the system
manual of the Reader.

The buffer for the responded configuration data cRspData must be dimensioned for the
size cReqBlockCount x cRspBlockSize bytes.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 87 (of 123) H9391-41e-ID-B.doc

5.7.66. FEISC_0x8B_WriteConfiguration

Function Function writes configuration blocks into the Reader.

Syntax int FEISC_0x8B_WriteConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR
cDevice, UCHAR cBank, UCHAR cMode, UCHAR cReqBlockCount, UCHAR
cReqBlockSize, UCHAR* cReqData)

Description This function allows you to write one configuration block or multiple or all configuration
blocks into the Reader. The configuration data must be stored with increasing address
order in which the configuration address is put in front of each configuration block.

The parameter cDevice identifies the controller in the Reader, cBank the configuration
memory and cMode additional options. More information can be found in the system
manual of the Reader.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 88 (of 123) H9391-41e-ID-B.doc

5.7.67. FEISC_0x8C_ResetConfiguration

Function Function loads factory default settings into the Reader.

Syntax int FEISC_0x8C_ResetConfiguration(int iReaderHnd, UCHAR cBusAdr, UCHAR
cDevice, UCHAR cBank, UCHAR cMode, int iReqBlockAdr, UCHAR
cReqBlockCount)

Description This function allows you to load factory settings for one configuration block or multiple or
all configuration blocks beginning with address cReqBlockAdr into the Reader.

The parameter cDevice identifies the controller in the Reader, cBank the configuration
memory and cMode additional options. More information can be found in the system
manual of the Reader.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 89 (of 123) H9391-41e-ID-B.doc

5.7.68. FEISC_0x9F_Piggyback_Command

Function Function transports an embedded protocol to an external Function Unit

Syntax int FEISC_0x9F_Piggyback_Command(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cDevice, UCHAR cPort, UCHAR* cReqPrt, int iReqLen, UCHAR*
cRspPrt, int* iRspLen)

Description This function transports an emebedded protocol in cReqPrt to a Reader, which forwards
it to a connected external Function Unit (e. g. People Counter ID ISC.ANTGPC). For
building the embedded protocol the function FEISC_BuildSendProtocol can be used.

The parameter cDevice names the type of the external Function Unit, cPort contains the
onboard communication port and cMode contains additional options. Detailed
information can be found in the system manual of the Function Unit.

The buffer for the receive protocoll in cRspPrt must be sufficient dimensioned. The
embedded receive protocol can be analysed and separated with the function
FEISC_SplitRecProtocol.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference 5.7.15. FEISC_BuildSendProtocol

5.7.18. FEISC_SplitRecProtocol

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 90 (of 123) H9391-41e-ID-B.doc

5.7.69. FEISC_0xA0_RdLogin

Function Function performs a login in the Reader.

Syntax int FEISC_0xA0_RdLogin(int iReaderHnd, UCHAR cBusAdr, UCHAR* cRd_PW, int
iDataFormat)

Description The function uses the password cRd_PW to login to the Reader.

The parameter iDataFormat specifies whether the password in cRd_PW is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 91 (of 123) H9391-41e-ID-B.doc

5.7.70. FEISC_0xA2_WriteMifareKeys

Function Function writes authentication key into the reader.

Syntax int FEISC_0xA2_WriteMifareKeys(int iReaderHnd, UCHAR cBusAdr, UCHAR
cType, UCHAR cAdr, UCHAR* cKey, int iDataFormat)

Note Be careful with this function.

You cannot read back the authentication key from the reader.

Description This function writes the authentication key for a Mifare-Transponder into the EEPROM
of the reader.

cType defines the key type, cAdr specifies the EEPROM address of the key in the
reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 92 (of 123) H9391-41e-ID-B.doc

5.7.71. FEISC_0xA3_Write_DES_AES_Keys

Function Function writes authentication key into the reader.

Syntax int FEISC_0xA3_Write_DES_AES_Keys(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cReaderKeyIndex, UCHAR cAuthentMode, UCHAR cKeyLen,
UCHAR* cKey, int iDataFormat)

Note Be careful with this function.

You cannot read back the authentication key from the reader.

Description This function writes the authentication key for a ISO 14443-4, Type A DESFire-
Transponder into the EEPROM of the reader.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 93 (of 123) H9391-41e-ID-B.doc

5.7.72. FEISC_0xAD_WriteReaderAuthentKey

Function Function writes authentication key into the reader.

Syntax int FEISC_0xAD_WriteReaderAuthentKey(int iReaderHnd, UCHAR cBusAdr,
UCHAR cMode, UCHAR cKeyType, UCHAR cKeyLen, UCHAR* cKey, int
iDataFormat)

Note Be careful with this function.

You cannot read back the authentication key from the reader.

Description This function writes the authentication key for secured data transmission into the
Reader.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference Basic information about secured data transmission can be found in 5.6. Secured data
transmission with encryption.

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 94 (of 123) H9391-41e-ID-B.doc

5.7.73. FEISC_0xAE_ReaderAuthent

Funktion Authentication function

Syntax int FEISC_0xAE_ReaderAuthent(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMode, UCHAR cKeyType, UCHAR cKeyLen, UCHAR* cKey, int iDataFormat)

Note Be careful with this function.

You cannot read back the authentication key from the reader.

Description This function writes the authentication key for secured data transmission into the
Reader.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the authentication key in cKey is to be
interpreted as a hex array (iDataFormat=0) or as a string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference Basic information about secured data transmission can be found in 5.6. Secured data
transmission with encryption.

For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

A list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 95 (of 123) H9391-41e-ID-B.doc

5.7.74. FEISC_0xB0_ISOCmd

Function Function initiates data transfer with ISO15693 or ISO14443 transponders.

Syntax int FEISC_0xB0_ISOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqData, int
iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer for multiple ISO15693 or ISO14443 transponders
located in the active zone of the ISC Reader.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the ISO15693 oder ISO14443 transponder are contained in
cRspData. iRspLen indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 96 (of 123) H9391-41e-ID-B.doc

5.7.75. FEISC_0xB1_ ISOCustAndPropCmd

Function Function initiates data transfer with an ISO15693 transponder.

Syntax int FEISC_0xB1_ISOCustAndPropCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR
cMfr, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer for multiple ISO15693 transponders located in the
active zone of the ISC Reader.

The parameter cMfr contains the manufacturer code and specifies the structure of send
data cReqData and receive data cRspData.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the ISO15693 transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 97 (of 123) H9391-41e-ID-B.doc

5.7.76. FEISC_0xB2_ISOCmd

Function Function initiates data transfer with an ISO14443 transponder.

Syntax int FEISC_0xB2_ISOCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqData, int
iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer for multiple ISO14443 transponders located in the
active zone of the ISC Reader.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the ISO14443 transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 98 (of 123) H9391-41e-ID-B.doc

5.7.77. FEISC_0xB3_EPCCmd

Function Function initiates data transfer with an UHF EPC-Transponder.

Syntax int FEISC_0xB3_EPCCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR* cReqData, int
iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer with an UHF EPC-Transponders located in the
active zone of the Reader.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the transponder are contained in cRspData. iRspLen indicates the
number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 99 (of 123) H9391-41e-ID-B.doc

5.7.78. FEISC_0xB4_EPC_UHF_Cmd

Function Function initiates data transfer with an UHF EPC-Transponder.

Syntax int FEISC_0xB4_EPC_UHF_Cmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cMfr,
UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description The function initiates a data transfer with an UHF EPC-Transponders located in the
active zone of the Reader.

The parameter cMfr contains the manufacturer code and specifies the structure of send
data cReqData and receive data cRspData.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the transponder are contained in cRspData. iRspLen indicates the
number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 100 (of 123) H9391-41e-ID-B.doc

5.7.79. FEISC_0xBB_C1G2_ TranspCmd

Function Function initiates data transfer with a Class 1 Gen 2 UHF transponder.

Syntax int FEISC_0xBB_C1G2_TranspCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR
ucMode, UCHAR ucTxPara, UCHAR ucRxPara, unsigned int uiTs, int iRspLength, UCHAR*
cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen)

Description The function initiates a data transfer for oneI Class 1 generation 2 UHF transponder
located in the active zone of the Reader.

The parameter ucMode contains the mode for the reader.

The parameters ucTxPara, ucRxPara and uiTs controlles the timing of the RF
communication.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the UHF transponder are contained in cRspData. iRspLen indicates
the number of characters in cRspData.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 101 (of 123) H9391-41e-ID-B.doc

5.7.80. FEISC_0xBC_CmdQueue

Function A queue command task is started asynchronous to the application

Syntax int FEISC_0xBC_CmdQueue(int iReaderHnd, int iMode, int iCmdCount, UCHAR*
ucCmdQueue, int iCmdQueueLen, FEISC_TASK_INIT* pInit)

Description This function starts the queue command as an asynchronous task. An asynchronous
task is an internal thread which sends the queue command to the reader and waits for
the reply for a time up to the timeout. Signaling of the reply data or the cancel condition
to the application is done by invoking a callback function.

The parameter iMode contains mode values. iCmdCount contains the number of
commands in the queue.

The queue data necessary for the data transfer are to be stored in ucCmdQueue. The
number of characters contained in ucCmdQueue must be indicated in iCmdQueueLen.

All the data relevant to the callback function are contained in the structure
FEISC_TASK_INIT. This structure is described in greater detail in section 5.4.
Asynchronous tasks for relieving the load on applications.

The following setting is recommended:
 FEISC_TASK_INIT Init;
 Init.cbFct1 = this->cbsTaskRsp1; // callback function
 Init.ucBusAdr = 255; // every reader will respond
 Init.uiFlag = FEISC_TASKCB_1;
 Init.uiTimeout = m_uiTimeout; // individual timeout
 Init.pAny = this; // optional: This-Pointer

iReaderHnd is the handle for the reader object.

Cross-
references

Additional information about asynchronous tasks can be found in the section 5.4.
Asynchronous tasks for relieving the load on applications.

5.7.13. FEISC_CancelAsyncTask

Note More detailed information about the protocol [0xBC] Command Queue can be found in
the manual for the OBID® classic-pro Reader family.

Return value In case of no error a 0 is returned. A value less than 0 indicate an error.

The list of error codes can be found in the Appendix.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 102 (of 123) H9391-41e-ID-B.doc

5.7.81. FEISC_0xBD_ ISOTranspCmd

Function Function initiates data transfer with an ISO14443A transponder.

Syntax int FEISC_0xBD_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int
iRspLength, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description The function initiates a data transfer for multiple ISO14443A transponders located in the
active zone of the ISC Reader.

The parameter iMode contains the mode for the reader.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the ISO14443A transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 103 (of 123) H9391-41e-ID-B.doc

5.7.82. FEISC_0xBE_ ISOTranspCmd

Function Function initiates data transfer with an ISO14443B transponder.

Syntax int FEISC_0xBE_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int
iRspLength, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description The function initiates a data transfer for multiple ISO14443B transponders located in the
active zone of the ISC Reader.

The parameter iMode contains the mode for the reader.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the ISO14443B transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 104 (of 123) H9391-41e-ID-B.doc

5.7.83. FEISC_0xBF_ ISOTranspCmd

Function Function initiates data transfer with an ISO15693 transponder.

Syntax int FEISC_0xBF_ISOTranspCmd(int iReaderHnd, UCHAR cBusAdr, int iMode, int
iRspLength, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description The function initiates a data transfer for multiple ISO15693 transponders located in the
active zone of the ISC Reader.

The parameter iMode contains the mode for the reader.

The parameter iRspLength contains the requested length (number of bits) of receive
data cRspData.

The data necessary for the data transfer are to be stored in cReqData. The number of
characters contained in cReqData must be indicated in iReqLen.

The data read from the ISO15693 transponder are contained in cRspData. iRspLen
indicates the number of characters in cRspData.

The parameter iDataFormat specifies whether cReqData and cRspData are to be
interpreted as a hex array or as a string.

Note the following: The buffer for the receive data cRspData must be dimensioned such
that all the receive data can be stored. This means in the case of iDataFormat=1 that the
size of the buffer cRspData is twice as large as in the case of iDataFormat=0. The
length of the send data (number of characters in cReqData) must be indicated in
iReqLen. If iDataFormat=1, then iReqLen is twice as large as in the case of
iDataFormat=0. The length indication for the receive buffer (cRspData) is to be handled
analogously.

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 105 (of 123) H9391-41e-ID-B.doc

5.7.84. FEISC_0xC0_SAMCmd, FEISC_0xC0_SAMCmd_Sync

Function Function initiates a data transfer with a SAM (Secure Access Module).

Syntax (1) int FEISC_0xC0_SAMCmd(int iReaderHnd, int iSlot, UCHAR* cReqData, int iReqLen,
FEISC_TASK_INIT* pInit)

(2) int FEISC_0xC0_SAMCmd_Sync(int iReaderHnd, UCHAR cBusAdr, int iSlot, int
iTimeout, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen)

Description The function (1) starts the SAM command as an asynchronous task. An asynchronous
task is an internal thread which sends the SAM command to the reader and waits for the
reply for a time up to the timeout. Signaling of the reply data or the cancel condition to
the application is done by invoking a callback function.

The function (2) executes the SAM command synchronous and returns the received
data in cRspData and the length of the received data in iRspLen.

The parameter iSlot identifies the SAM slot.

The parameter iTimeout defines the maximum timeout in the Reader. The host timeout
should be a little higher.

The queue data necessary for the data transfer are to be stored in cReqData. The
number of characters contained in cReqData must be indicated in iReqLen.

All the data relevant to the callback function for (1) are contained in the structure
FEISC_TASK_INIT. This structure is described in greater detail in section 5.4.
Asynchronous tasks for relieving the load on applications.

The following setting is recommended:
 FEISC_TASK_INIT Init;
 Init.cbFct1 = this->cbsTaskRsp1; // callback function
 Init.ucBusAdr = 255; // every reader will respond
 Init.uiFlag = FEISC_TASKCB_1;
 Init.uiTimeout = m_uiTimeout; // individual timeout
 Init.pAny = this; // optional: This-Pointer

iReaderHnd is the handle for the Reader object.

Cross-reference Additional information about asynchronous tasks can be found in the section 5.4.
Asynchronous tasks for relieving the load on applications.

5.7.13. FEISC_CancelAsyncTask

Note More detailed information about the protocol [0xC0] SAM Command can be found in the
manual for the OBID® classic-pro Reader family.

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 106 (of 123) H9391-41e-ID-B.doc

5.7.85. FEISC_0xC1_DESFireCmd

Function Function initiates a data transfer with a ISO 14443-4, Type A DESFire Transponder

Syntax int FEISC_0xC1_DESFireCmd(int iReaderHnd, UCHAR cSubCmd, UCHAR cMode,
UCHAR* cAppID, UCHAR cReaderKeyIndex, UCHAR* cReqData, int iReqLen, UCHAR*
cRspData, int* iRspLen, int iDataFormat)

Description This function executes a DESFire specific command.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

5.7.86. FEISC_0xC2_MifarePlusCmd

Function Function initiates a data transfer with a ISO 14443, Type A MIFARE Plus Transponder

Syntax int FEISC_0xC2_MifarePlusCmd(int iReaderHnd, UCHAR cBusAdr, UCHAR cSubCmd,
UCHAR cMode, UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int
iDataFormat)

Description This function executes a MIFARE Plus specific command.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 107 (of 123) H9391-41e-ID-B.doc

5.7.87. FEISC_0xC3_DESFireCmd

Function Function initiates a data transfer with a ISO 14443-4, Type A DESFire Transponder

Syntax int FEISC_0xC3_DESFireCmd(int iReaderHnd, UCHAR cSubCmd, UCHAR cMode,
UCHAR* cReqData, int iReqLen, UCHAR* cRspData, int* iRspLen, int iDataFormat)

Description This function executes a DESFire specific command.

All parameters are declared in detail in the system manual of the designated reader.

The parameter iDataFormat specifies whether the request data in cReqData and
response data in cRspData is to be interpreted as a hex array (iDataFormat=0) or as a
string (iDataFormat=1).

iReaderHnd is the handle for the Reader object.

cBusAdr is the bus address set in the Reader.

Cross-reference For more information on iDataFormat see Section 5.3. Parameter transfer

Return value If there was no error, the return value contains the status byte of the reply protocol.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 108 (of 123) H9391-41e-ID-B.doc

5.8. Support for multithreading

The functions in FEISC are essentially thread-safe, meaning function calls from several threads to
the library are possible as long as a communications procedure in a thread is never interrupted by
another communications procedure from another thread.

There are no protection mechanisms within the library which preclude a preemptive procedure
from another thread. This protection must be implemented on the application level.

A problem does occur when a callback function implemented using the FEISC_AddEventHandler
function is used to transfer a protocol string to the application and represent it in a protocol
window. Attempting to display the string in the window from out of the thread can cause the
program to crash (e.g. when using MFC in C++). The remedy is to buffer store and send a
Windows message with the API function SendMessage(..) to the window. This will serve to
decouple the threads. Even better in such cases is to select the FEISC_AddEventHandler
message methods from right at the outset.

Closing a window while a protocol is being represented can also cause a program crash. The
FEISC offers some help here in that the protocol output in the library can be specifically stopped in
all Reader objects. This is done by invoking FEISC_SetReaderPara(0, „LockProtToApp“, „“). Next
continue checking using the function FEISC_GetReaderPara(0, „IsProtToAppLocked“, „“) until all
the protocol outputs from the library are finished. If the function returns a 0, the protocol output is
not yet finished. If a 1 is returned, the window may be closed. Contrary to convention, the return
values are selected so that you can check them (in any case using C) for true.

C++ Example with MFC:

The member function OnClose is called when you want to close the window (View) by clicking with
the mouse on the close icon. The class FELogChildFrame derived from CMDIChildWnd is the
frame window of the Doc/View pair for the protocol output window. Cyclically recalling with a
WM_CLOSE message to yourself will cause a time loop which gives the FEISC time to close the
protocol outputs. Only when the function FEISC_GetReaderPara(0, „IsProtToAppLocked“, „“) no
longer returns a 0 may the window be closed using CMDIChildWnd::OnClose().

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 109 (of 123) H9391-41e-ID-B.doc

void FELogChildFrame::OnClose()
{
 // Message to library that all further protocol outputs are to be locked
 FEISC_SetReaderPara(0, "LockProtToApp", "");

 // Query to library whether all protocol outputs are already finished
 int iBack = FEISC_GetReaderPara(0, "IsProtToAppLocked", "");

 if(iBack==0)
 {
 // No, therefore with message to this repeated call from OnClose
 this->SendMessage(WM_CLOSE, 0, 0);
 return;
 }

 // If you are here then all protocol outputs are finished
 // and there is no longer a risk of crashing when the Doc/View pair is closed
 CMDIChildWnd::OnClose();
}

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 110 (of 123) H9391-41e-ID-B.doc

6. Appendix

6.1. Error codes

Error constants Value Description

FEISC_ERR_NEWREADER_FAILURE -4000 Error in creating a new Reader object

FEISC_ERR_EMPTY_LIST -4001 Reader handle list is empty (no Reader objects
stored)

FEISC_ERR_POINTER_IS_NULL -4002 Pointer to transfer parameter is NULL

FEISC_ERR_NO_MORE_MEM -4003 No more system memory

FEISC_ERR_UNKNOWN_COMM_PORT -4004 Unknown COM port

FEISC_ERR_UNSUPPORTED_FUNCTION -4005 Unsupported function

FEISC_ERR_NO_USB_SUPPORT -4006 No USB support (e.g. under NT4)

FEISC_ERR_OLD_FECOM -4007 Old FECOM.DLL detected

FEISC_ERR_NO_VALUE -4010 No data value

FEISC_ERR_UNKNOWN_HND -4020 The transferred Reader handle is unknown

FEISC_ERR_HND_IS_NULL -4021 The transferred Reader handle is 0

FEISC_ERR_HND_IS_NEGATIVE -4022 The transferred Reader handle is negative

FEISC_ERR_NO_HND_FOUND -4023 No Reader handle found in Reader handle list

FEISC_ERR_PORTHND_IS_NEGATIVE -4024 The transferred port handle is negative

FEISC_ERR_HND_UNVALID -4025 Invalid port handle; the first byte (MSB) in the port
handle is invalid

FEISC_ERR_PROTLEN -4030 Protocol length error

FEISC_ERR_CHECKSUM -4031 Checksum error

FEISC_ERR_BUSY_TIMEOUT -4032 Timeout after continuous busy messages

FEISC_ERR_UNKNOWN_STATUS -4033 Unknown status byte

FEISC_ERR_NO_RECPROTOCOL -4034 No USB receive protocol arrived

FEISC_ERR_CMD_BYTE -4035 Wrong command byte in receive protocol

FEISC_ERR_TRANSCEIVE -4036 General USB communications error

FEISC_ERR_REC_BUS_ADR -4037 False bus address in receive protocol

FEISC_ERR_UNKNOWN_PARAMETER -4050 Transfer parameter is unknown

FEISC_ERR_PARAMETER_OUT_OF_RANGE -4051 Transfer parameter too large or too small

FEISC_ERR_ODD_PARAMETERSTRING -4052 The transferred string contains an uneven number of
characters

FEISC_ERR_UNKNOWN_ERRORCODE -4053 Unknown error code

FEISC_ERR_UNSUPPORTED_OPTION -4054 Unsupported option

FEISC_ERR_UNKNOWN_EPC_TYPE -4055 Unknown EPC type

FEISC_ERR_NO_PLUGIN -4060 Installation of Plug-In object in reader object is
missing

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 111 (of 123) H9391-41e-ID-B.doc

Error constants Value Description

FEISC_ERR_PLUGIN_PRESENT -4061 Error while installation of a second Plug-In object to
a reader object

FEISC_ERR_UNKNOWN_PLUGIN_ID -4062 Unknown Plug-In ID

FEISC_ERR_PI_BUILD_DATA -4063 Return value for an error in the Plug-In function
build_datastream

FEISC_ERR_PI_BUILD_FRAME -4064 Return value for an error in the Plug-In function
build_protocol

FEISC_ERR_PI_SPLIT_FRAME -4065 Return value for an error in the Plug-In function
split_protocol

FEISC_ERR_PI_SPLIT_DATA -4066 Return value for an error in the Plug-In function
split_datastream

FEISC_ERR_BUFFER_OVERFLOW -4070 Databuffer is too small

FEISC_ERR_TASK_STILL_RUNNING -4080 Asynchronous task is still running

FEISC_ERR_TASK_NOT_STARTED -4081 Start of asynchronous task failed

FEISC_ERR_TASK_TIMEOUT -4082 Asynchronous task timed out: the reader has sent
no reply

FEISC_ERR_TASK_SOCKET_INIT -4083 The socket for the task couldn’t be initialized.

FEISC_ERR_TASK_BUSY -4084 Asynchronous task executes the callback function
and is just busy. The application must repeat the
function.

FEISC_ERR_THREAD_CANCEL_ERROR -4085 Cancellation of internal thread failed.

FEISC_ERR_CRYPT_LOAD_LIBRARY -4090 Error while loading openSSL library

FEISC_ERR_CRYPT_INIT -4091 Error while crypto initialization

FEISC_ERR_CRYPT_AUTHENT_PROCESS -4092 Error in authentication process

FEISC_ERR_CRYPT_ENCYPHER -4093 Error in encypher process

FEISC_ERR_CRYPT_DECYPHER -4094 Eror in decypher process

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 112 (of 123) H9391-41e-ID-B.doc

6.2. List of variables

Variable Value range Default Unit Description

PortHnd21 0 ... 4294967295 0 PortHandle for communication with ID FECOM, ID
FETCP or ID FEUSB

LogProt 0, 1 0 If 1, then protocol are output through event flagging

LogFile 0, 1 0 If 1, then writing all protocol strings into Logfile
feisc_log.txt

LogFilename Max. 256 chars feisc_log.txt Filename for LogFile

Language 7 - german
9 - english

9 - language selection for internal strings.

RecBusAdr 0 ... 255 - - bus address from last receive protocol.
Read-only value.

ConvHexToString 0, 1 0 - If 1, then all received bytes in scan option are
converted to a string.

Parameter is only useful, if the readers scan data
output is set to unformatted hex data.

FrameSupport „Standard“,
„Advanced“

“Standard” - Selection of the protocol frame of the send protocol.
The frame of the received protocol is detected
automatically.

SendStr - - - Provides last send protocol with preceding date and
time of day

RecStr - - - Provides last receive protocol with preceding date and
time of day

ChkRecBusAdr 0, 1 0 - If 1, then check of received bus address with the bus
address of send protocol. If bus addresses are
unequal, an error code is responded. Exceptions: bus
addresses 254 and 255.

LockProtToApp none - Multithreading support:
Locks the protocol output through event flagging in all
Reader objects

s. 5.8. Support for multithreading

UnlockProtToApp none - Multithreading support:
Unlocks protocol output through event flagging

s. 5.8. Support for multithreading

IsProtToAppLocked none - Multithreading support:
Asks whether all Reader objects are finished with
protocol output through event flagging

s. 5.8. Support for multithreading

21 Note the remarks in Section 5.7.2. FEISC_NewReader

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 113 (of 123) H9391-41e-ID-B.doc

6.3. List of constants for the FEISC_EVENT_INIT structure

The constants definitions are contained in the file FEISC.H.

Constants Value Use Description

FEISC_THREAD_ID 1 uiFlag Event flagging with thread message

FEISC_WND_HWND 2 uiFlag Event flagging with window message

FEISC_CALLBACK 3 uiFlag Event flagging with callback function

FEISC_EVENT 4 uiFlag Event flagging with Windows-API event

FEISC_CALLBACK_2 5 uiFlag Event flagging with 2. callback function

FEISC_CALLBACK_4 6 uiFlag Event flagging with 4. callback function

FEISC_PRT_EVENT 1 uiUse Flagging for send and receive protocols

FEISC_SNDPRT_EVENT 2 uiUse Flagging for send protocols

FEISC_RECPRT_EVENT 3 uiUse Flagging for receive protocols

FEISC_SCANNER_EVENT 4 uiUse Flagging for received scanner protocols

6.4. List of constants for TaskID and for the FEISC_TASK_INIT structure

The constants definitions are contained in the file FEISC.H.

Constants Value Use Description

FEISC_TASKID_FIRST_NEW_TAG 1 iTaskID one-time inventory

FEISC_TASKID_EVERY_NEW_TAG 2 iTaskID repeating inventory

FEISC_TASKID_NOTIFICATION 3 iTaskID unlimited task for receiving of notifications

FEISC_TASKID_SAM_COMMAND 4 iTaskID one-time task for receiving the SAM response

FEISC_TASKID_COMMAND_QUEUE 5 iTaskID one-time task for receiving the response of a Queue-
Command

FEISC_TASKID_MAX_EVENT 6 iTaskID unlimited task for receiving of Access notifications

FEISC_TASKID_PEOPLE_COUNTER 7 iTaskID unlimited task for receiving People Counter events

FEISC_TASKCB_1 1 uiFlag select of callback function cbFct1

FEISC_TASKCB_2 2 uiFlag select of callback function cbFct2

FEISC_TASKCB_3 3 uiFlag select of callback function cbFct3

FEISC_TASK_CHANNEL_TYPE_AS_OPEN 1 uiChannelType for all inventary tasks

FEISC_TASK_CHANNEL_TYPE_NEW_TCP 5 uiChannelType for notification task

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 114 (of 123) H9391-41e-ID-B.doc

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 115 (of 123) H9391-41e-ID-B.doc

6.5. History

V7.01.00

• Improved thread safeness

• FEISC_StartAsyncTask returns an error code, if the internal Thread could not be executed.

• Windows:

1. Migration from Visual Studio 2008 to Visual Studio 2010.

2. DLL without MFC

3. First release of 64-Bit version

4. Dynamic binding to Log-Manager

• First Release for Mac OS X, V10.7.3 or higher

V7.00.01

• Bugfix for Keep-Alive in Notification-Task.

V7.00.00

• This version is not compatible with the previous versions. The reasons are listed below. Code
modifications in applications may be necessary.

• The structure struct _FEISC_TASK_INIT is extended with new parameters for the Keep-Alive
option inside the Notification-Task. In consequence, the new parameter bKeepAlive must be
set to false or, which is the better approach, initialize the complete structure with 0 (e.g. with
memset). It is recommended to view each code line, which uses this structure.

• New Plug-in API for connecting individual port types.

• Removed functions: FEISC_InstallPlugIn and FEISC_RemovePlugIn

• Windows / Windows CE:

1. Migration of the development environment from Visual Studio 6 to Visual Studio 2008.

2. Adaptation of the Callback declarations in struct _FEISC_EVENT_INIT and struct
_FEISC_TASK_INIT concerning the calling convention. Thus, this version of FEISC is not
compatible with the previous version and with applications compiled against the previous
version of FEISC. Code modifications are not necessary, but re-compilation of
applications is mandatory.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 116 (of 123) H9391-41e-ID-B.doc

V6.02.01

• Bugfix for automatic deactivation of the crypto mode

V6.02.00

• New functions: FEISC_0xC3_DESFireCmd and FEISC_0xC0_SAMCmd_Sync

V6.01.00

• Support for People Counter ID ISC.ANTGPC

• New function:

FEISC_0x9F_Piggyback_Command

• Extensions in the structure FEISC_EVENT_INIT for event signaling

V6.00.00

• New option for encrypted data transmission by use of openSSL library in the version 0.9.8l (s.
5.6. Secured data transmission with encryption).

• New functions:

FEISC_0x8A_ReadConfiguration

FEISC_0x8B_WriteConfiguration

FEISC_0x8C_ResetConfiguration

FEISC_0xAD_WriteReaderAuthentKey

FEISC_0xAE_ReaderAuthent

• New Error Codes

Error constants Value Description

FEISC_ERR_CRYPT_LOAD_LIBRARY -4090 Error while loading openSSL library

FEISC_ERR_CRYPT_INIT -4091 Error while crypto initialization

FEISC_ERR_CRYPT_AUTHENT_PROCESS -4092 Error in authentication process

FEISC_ERR_CRYPT_ENCYPHER -4093 Error in encypher process

FEISC_ERR_CRYPT_DECYPHER -4094 Eror in decypher process

V5.07.13

• New functions: FEISC_0x1F_MAXDataExchange, FEISC_0x76_CheckAntennas,
FEISC_0xC2_MifarePlusCmd

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 117 (of 123) H9391-41e-ID-B.doc

V5.07.10

• Using of specialized receive algorithm adapted to OBID protocol frames in FECOM, enabled
with the parameter UseOBID. This option is temporary disabled for the internal Scanner
Thread.

• New functions: FEISC_0xC1_DESFireCmd, FEISC_0xA3_Write_DES_AES_Keys

V5.07.05

• Check of receive protocol frame in FEISC_SendTransparent

• New functions: FEISC_0x8A_ReadConfiguration, FEISC_0x8B_WriteConfiguration,
FEISC_0x8C_ResetConfiguration,

V5.06.03

• New functions FEISC_0xC0_SAMCmd, FEISC_0xBC_CmdQueue,
FEISC_0xBB_C1G2_TranspCmd

V5.05.05

• Optimizations in internal Notification-Thread (activated with FEISC_StartAsyncTask) for
communication channels with higher error rate, like GPRS.

• New parameter for FEISC_GetReaderPara and FEISC_SetReaderPara: LogFilename

V5.05.01

• USB support for Linux

• New functions: FEISC_0xB4_EPC_UHF_Cmd, FEISC_0x6B_CentralizedRFSync

• New status bytes: 0x86, 0x18

• The Linux library is compiled with GCC 3.3.3 under SuSE Linux 9.1

V5.04.11

• Modified licence agreement

• New error code -4085

V5.04.10

• New Task: Notification for Reader with Notification Mode.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 118 (of 123) H9391-41e-ID-B.doc

• Modifications in the structur FEISC_TASK_INIT. This structure is not compatible to the
previous version.

• New function: FEISC_0x34_ForceNotifyTrigger

• All threads available under Linux

• Support for new status bytes: 0xF1, 0xF2, 0xF8

• New error codes: FEISC_ERR_TASK_SOCKET_INIT, FEISC_ERR_TASK_BUSY

V5.04.00

• New functions FEISC_StartAsyncTask, FEISC_CancelAsyncTask and
FEISC_TriggerAsyncTask.

• New error codes

V5.03.09

• New function FEISC_0x72_SetOutput.

• FEISC_0x22_ReadBuffer supports extended features (TR-DATA, INPUT, STATUS).

V5.03.03

• New function FEISC_0xB3_EPCCmd.

• FEISC_Transmit and FEISC_Receive can be used with all port types.

• New status byte: 0x96 (ISO14443-Error)

V5.03.00

• The new version is not 100% downward compatible with the previous version because of
rename of function FEISC_0x66_FirmwareVersion. The new name is
FEISC_0x66_ReaderInfo.

V5.02.00

• Prepared for comming soon new USB protocols.

• The new version is not 100% downward compatible with the previous version because of
rename and modification of the parameter list of function FEISC_0x18DestroyEPC. The new
name is FEISC_0x18Destroy.

• New error code: -4055.

• Some minor bug fixes.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 119 (of 123) H9391-41e-ID-B.doc

V5.01.19

• Support of Transponder I-CODE UID in protocol [0x18] Destroy.

• First Linux Release (SuSE Linux 8.2, GNU Compiler Collection V3.3-23, glibc V2.3.2-6)

V5.01.17

• Plug-In mechanism for integration of user-defined protocol drivers.

• All functions, except of FEISC_BuildProtocol and FEISC_SplitProtocol, are 100% downward
compatible with the previous version.

• FEISC_BuildProtocol is renamed in FEISC_BuildSendProtocol and has changes in the
function parameters.

• FEISC_SplitProtocol is renamed in FEISC_SplitRecProtocol and has changes in the
function parameters.

• New functions:
FEISC_BuildRecProtocol
FEISC_SplitSendProtocol
FEISC_Conv2StdProtocol
FEISC_Conf2AdvProtocol
FEISC_InstallPlugIn
FEISC_RemovePlugIn

• New protocol functions:
FEISC_0x22_ReadBuffer
FEISC_0x18_DestroyEPC
FEISC_0x87_SetSystemDate
FEISC_0x88_GetSystemDate
FEISC_0x64_SystemReset.

• Support of the protocol [0x74] Read Input for ID ISC.PRH-A and -U Reader.

• Support of Advanced Protocol Frames with two length bytes.

• Thread-Security for created Reader-Objects.

• Support of multithreading: every created Reader-Object has an own internal buffer. This
enables the simultaneous operation of multiple readers if every reader is connected on
different ports.

• New error codes:

Error constants Value Description

FEISC_ERR_NO_VALUE -4010 Error in the function FEISC_GetReaderPara

FEISC_ERR_NO_PLUGIN -4060 Installation of Plug-In object in reader object is
missing

FEISC_ERR_PLUGIN_PRESENT -4061 Error while installation of a second Plug-In object to
a reader object

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 120 (of 123) H9391-41e-ID-B.doc

Error constants Value Description

FEISC_ERR_UNKNOWN_PLUGIN_ID -4062 Unknown Plug-In ID

FEISC_ERR_PI_BUILD_DATA -4063 Return value for an error in the Plug-In function
build_datastream

FEISC_ERR_PI_BUILD_FRAME -4064 Return value for an error in the Plug-In function
build_protocol

FEISC_ERR_PI_SPLIT_FRAME -4065 Return value for an error in the Plug-In function
split_protocol

FEISC_ERR_PI_SPLIT_DATA -4066 Return value for an error in the Plug-In function
split_datastream

FEISC_ERR_BUFFER_OVERFLOW -4070 Databuffer is too small

V5.01.00

• The new version is 100% downward compatible with the previous version.

• New functions: FEISC_0xBD_ISOTranspCmd, FEISC_0xBE_ISOTranspCmd

• Integration of TCP/IP support if the support package ID FETCP is used

• Bug-fix in in FEISC_0xBF_ISOTranspCmd for parameter iDataFormat=1

• Bus address of last receive protocol is saved and can be read out with FEISC_GetReaderPara

• new error code: -4054 (FEISC_ERR_UNSUPPORTED_OPTION)

V5.00.00

• The new version is 100% downward compatible with the previous version.

• New functions: FEISC_0xA2_WriteMifareKeys, FEISC_0xB2_ISOCmd

• First Windows CE Version

V4.09.00

• Move of all constants from the file ferwdef.h to the file ferw.h. The file ferwdef.h is now
dispensable.

• new function: FEISC_0x55_StartFlashLoaderEx which supports any busaddress and
replaces FEISC_0x55_StartFlashLoader.

• Internal check of received bus address (normally disabled).

• new parameter ChkRecBusAdr for the functions FEISC_SetReaderPara and
FEISC_GetReaderPara to activate the check of the received busaddress.

• new parameter ConvHexToString for the functions FEISC_SetReaderPara and
FEISC_GetReaderPara to activate the conversion of raw hex data received from reader in
scan mode.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 121 (of 123) H9391-41e-ID-B.doc

• new error code FEISC_ERR_REC_BUS_ADR

• new uiFlag constant for the structure FEISC_EVENT_INIT: FEISC_CALLBACK_2

• new uiUse constant for the structure FEISC_EVENT_INIT: FEISC_SCANNER_EVENT

V5.06.00 – V4.08.00

• New function FEISC_0x6F_AntennaTuning

• Removed functions:

FEISC_0x01_MultiJobPoll
FEISC_0x01_MultiJobPollAndState
FEISC_0x03_MultiJobState
FEISC_0x11_GetSerNr
FEISC_0x14_WritePData
FEISC_0x15_ReadPData
FEISC_0x16_WriteCData
FEISC_0x17_ReadCData
FEISC_0x6B_InitNoiseLevel

V4.04.00 – V4.05.00

• Internal Versions.

V4.03.00

• Change of the function parameters in FEISC_0xBF_ISOTranspCmd.

V4.02.00

• Check of the command byte in the response protocol

• Error correction for USB-Protocols

• Correction of small errors

V4.01.00

• New functions: FEISC_GetStatusText, FEISC_0xB1_ISOCustAndPropCmd,
FEISC_0xBF_ISOTranspCmd.

V4.00.00

This is the official Release Version. No changes.

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 122 (of 123) H9391-41e-ID-B.doc

V3.01.00

• FEISC.DLL only works together with FECOM.DLL in Version 2.00.00 and higher. Older
versions of FECOM.DLL will not allow communication to take place.

• Event flagging now also supports Windows API events.

V3.00.00

• Support of OBID® USB devices

• New functions: FEISC_GetErrorText, FEISC_GetLastError, FEISC_AddEventHandler,
FEISC_DelEventHandler.

• Limiting the port handle (transfer parameter iPortHnd in FEISC_NewReader) to 0x0FFFFFFF.
The first byte (MSB) is reserved for distinguishing between the communication channels
(asynchronous/USB).

V2.01.00

• New parameters for FEISC_GetReaderPara: ERRCODE, ERRSTR, SENDSTR, RECSTR

• Renaming of the functions FEISC_0x85_SetTime in FEISC_0x85_SetSysTimer and
FEISC_0x86_GetTime in FEISC_0x86_GetSysTimer.

• New functions: FEISC_0x55_StartFlashLoader, FEISC_0x6E_RdDiag and
FEISC_0xA0_RdLogin.

Version 2.00.03

• Eliminates errors in FEISC_0x01_MultiJobPoll, FEISC_0x01_MultiJobPollAndState and
FEISC_0x03_MultiJobState.

• New addition of command parameters for supporting multithreading: 5.8. Support for
multithreading

•

• see and the function FEISC_0x75_AdjAntenna.

Version 2.00.01

• Renaming of the function FEISC_0x23_InitBuffer to FEISC_0x33_InitBuffer, since the
command byte of the protocol has changed.

V2.00.00

New functions for the Long-Range-Reader ID ISCLR:

1. FEISC_0x01_MultiJobPoll

OBID® Manual ID FEISC V7.01.04

FEIG ELECTRONIC GmbH Page 123 (of 123) H9391-41e-ID-B.doc

2. FEISC_0x01_MultiJobPollAndState
3. FEISC_0x03_MultiJobState
4. FEISC_0x21_ReadBuffer
5. FEISC_0x23_InitBuffer
6. FEISC_0x31_ReadDataBufferInfo
7. FEISC_0x32_ClearDataBuffer
8. FEISC_0x6B_InitNoiseThreshold
9. FEISC_0x6C_SetNoiseLevel
10. FEISC_0x6D_GetNoiseLevel
11. FEISC_0x84_SetCFGMemLoc
12. FEISC_0x85_SetTime
13. FEISC_0x86_GetTime

In addition the following functions were added to the parameter list:

1. FEISC_BuildProtocol: The parameter iDataFormat is new
2. FEISC_SplitProtocols: The parameter iDataFormat is new
3. FEISC_GetLastSendProt: The parameter iDataFormat is new
4. FEISC_GetLastRecProt: The parameter iDataFormat is new
5. FEISC_SendTransparent: The parameter iDataFormat is new
6. FEISC_Transmit: The parameter iDataFormat is new
7. FEISC_Receive: The parameter iDataFormat is new
8. FEISC_0x80_ReadConfBlock: The parameter iDataFormat is new
9. FEISC_0x81_WriteConfBlock: The parameter iDataFormat is new

We have done this for the sake of Visual Basic programmers.

New query function added:

FEISC_GetLastRecProtLen

	Licensing agreement for use of the software
	Third-party Licensing agreements
	Licensing agreement of openSSL organization

	Contents:
	Introduction
	Shipment
	Windows XP / Vista / 7
	Windows CE
	Linux
	Mac OS X

	Changes since the previous version
	Installation
	32- and 64-Bit Windows XP/Vista/7
	Windows CE
	32- and 64-Bit Linux
	64-Bit Mac OS X

	Including into the application program
	Supported Development Tools
	Incorporating into Visual Studio
	Incorporating into Xcode

	Programming Interface
	Overview
	Thread security
	Parameter transfer
	Asynchronous tasks for relieving the load on applications
	Event flagging to applications5F
	Secured data transmission with encryption
	Overview
	Feedback of error cases
	Notes for Programmers

	List of functions
	Which function for which OBID i-scan® and OBID® classic-pro Reader
	FEISC_NewReader
	FEISC_DeleteReader
	FEISC_GetReaderList
	FEISC_GetDLLVersion
	FEISC_GetErrorText
	FEISC_GetStatusText
	FEISC_GetReaderPara
	FEISC_SetReaderPara
	FEISC_AddEventHandler
	FEISC_DelEventHandler
	FEISC_StartAsyncTask
	FEISC_CancelAsyncTask
	FEISC_TriggerAsyncTask
	FEISC_BuildSendProtocol
	FEISC_BuildRecProtocol
	FEISC_SplitSendProtocol
	FEISC_SplitRecProtocol
	FEISC_SendTransparent
	FEISC_Transmit
	FEISC_Receive
	FEISC_GetLastSendProt
	FEISC_GetLastRecProt
	FEISC_GetLastState
	FEISC_GetLastRecProtLen
	FEISC_GetLastError
	FEISC_0x18_Destroy
	FEISC_0x1A_Halt
	FEISC_0x1B_ResetQuietBit
	FEISC_0x1C_EASRequest
	FEISC_0x1F_MAXDataExchange
	FEISC_0x21_ReadBuffer
	FEISC_0x22_ReadBuffer
	FEISC_0x31_ReadDataBufferInfo
	FEISC_0x32_ClearDataBuffer
	FEISC_0x33_InitBuffer
	FEISC_0x34_ForceNotifyTrigger
	FEISC_0x52_GetBaud
	FEISC_0x55_StartFlashLoader
	FEISC_0x55_StartFlashLoaderEx
	FEISC_0x63_CPUReset
	FEISC_0x64_SystemReset
	FEISC_0x65_SoftVersion
	FEISC_0x66_ReaderInfo
	FEISC_0x69_RFReset
	FEISC_0x6A_RFOnOff
	FEISC_0x6B_CentralizedRFSync
	FEISC_0x6C_SetNoiseLevel
	FEISC_0x6D_GetNoiseLevel
	FEISC_0x6E_RdDiag
	FEISC_0x6F_AntennaTuning
	FEISC_0x71_SetOutput
	FEISC_0x72_SetOutput
	FEISC_0x74_ReadInput
	FEISC_0x75_AdjAntenna
	FEISC_0x76_CheckAntennas
	FEISC_0x80_ReadConfBlock
	FEISC_0x81_WriteConfBlock
	FEISC_0x82_SaveConfBlock
	FEISC_0x83_ResetConfBlock
	FEISC_0x85_SetSysTimer
	FEISC_0x86_GetSysTimer
	FEISC_0x87_SetSystemDate
	FEISC_0x88_GetSystemDate
	FEISC_0x8A_ReadConfiguration
	FEISC_0x8B_WriteConfiguration
	FEISC_0x8C_ResetConfiguration
	FEISC_0x9F_Piggyback_Command
	FEISC_0xA0_RdLogin
	FEISC_0xA2_WriteMifareKeys
	FEISC_0xA3_Write_DES_AES_Keys
	FEISC_0xAD_WriteReaderAuthentKey
	FEISC_0xAE_ReaderAuthent
	FEISC_0xB0_ISOCmd
	FEISC_0xB1_ ISOCustAndPropCmd
	FEISC_0xB2_ISOCmd
	FEISC_0xB3_EPCCmd
	FEISC_0xB4_EPC_UHF_Cmd
	FEISC_0xBB_C1G2_ TranspCmd
	FEISC_0xBC_CmdQueue
	FEISC_0xBD_ ISOTranspCmd
	FEISC_0xBE_ ISOTranspCmd
	FEISC_0xBF_ ISOTranspCmd
	FEISC_0xC0_SAMCmd, FEISC_0xC0_SAMCmd_Sync
	FEISC_0xC1_DESFireCmd
	FEISC_0xC2_MifarePlusCmd
	FEISC_0xC3_DESFireCmd

	Support for multithreading

	Appendix
	Error codes
	List of variables
	List of constants for the FEISC_EVENT_INIT structure
	List of constants for TaskID and for the FEISC_TASK_INIT structure
	History
	V7.01.00
	V7.00.01
	V7.00.00
	V6.02.01
	V6.02.00
	V6.01.00
	V6.00.00
	V5.07.13
	V5.07.10
	V5.07.05
	V5.06.03
	V5.05.05
	V5.05.01
	V5.04.11
	V5.04.10
	V5.04.00
	V5.03.09
	V5.03.03
	V5.03.00
	V5.02.00
	V5.01.19
	V5.01.17
	V5.01.00
	V5.00.00
	V4.09.00
	V5.06.00 – V4.08.00
	V4.04.00 – V4.05.00
	V4.03.00
	V4.02.00
	V4.01.00
	V4.00.00
	V3.01.00
	V3.00.00
	V2.01.00
	V2.00.00

