
ZEBRA SCANNER SDK for ANDROID
DEVELOPER GUIDE

ZEBRA SCANNER SDK for ANDROID
DEVELOPER GUIDE

MN002223A04
Revision A
June 2017

ii Zebra Scanner SDK for Android Developer Guide

No part of this publication may be reproduced or used in any form, or by any electrical or mechanical means,
without permission in writing from Zebra. This includes electronic or mechanical means, such as photocopying,
recording, or information storage and retrieval systems. The material in this manual is subject to change
without notice.

The software is provided strictly on an “as is” basis. All software, including firmware, furnished to the user is on
a licensed basis. Zebra grants to the user a non-transferable and non-exclusive license to use each software
or firmware program delivered hereunder (licensed program). Except as noted below, such license may not be
assigned, sublicensed, or otherwise transferred by the user without prior written consent of Zebra. No right to
copy a licensed program in whole or in part is granted, except as permitted under copyright law. The user shall
not modify, merge, or incorporate any form or portion of a licensed program with other program material, create
a derivative work from a licensed program, or use a licensed program in a network without written permission
from Zebra. The user agrees to maintain Zebra’s copyright notice on the licensed programs delivered
hereunder, and to include the same on any authorized copies it makes, in whole or in part. The user agrees not
to decompile, disassemble, decode, or reverse engineer any licensed program delivered to the user or any
portion thereof.

Zebra reserves the right to make changes to any software or product to improve reliability, function, or design.
Zebra does not assume any product liability arising out of, or in connection with, the application or use of any
product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any Zebra Technologies
Corporation, intellectual property rights. An implied license only exists for equipment, circuits, and subsystems
contained in Zebra products.

Warranty
For the complete Zebra hardware product warranty statement, go to:

http://www.zebra.com/warranty.

Revision History
Changes to the original manual are listed below:

Change Date Description

-01 Rev A 8/2015 Initial Release

-02 Rev A 10/2015 Software updates.

-03 Rev A 9/2016 Software updates.

-04 Rev A 4/2017 Software updates.

http://www.zebra.com/warranty

TABLE OF CONTENTS
Warranty ... ii
Revision History .. ii

About This Guide
Introduction ... v
Chapter Descriptions .. v
Related Documents .. v
Additional Resources .. vi
Notational Conventions... vi
Service Information ... vi

Chapter 1: GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID
Introduction .. 1-1
Overview of the Zebra Scanner SDK for Android .. 1-1

Supported Scanners .. 1-2
System Requirements .. 1-3

Installation and Configuration .. 1-3
Installing the Scanner Control Application ... 1-3
Running and Configuring the Scanner Control Application .. 1-4
Using Scanner Control Application with a Supported Device .. 1-7

Setting Up the Zebra Scanner SDK for Android in Android Studio .. 1-16
Prerequisite 1 - Installation of Android Studio .. 1-16
Prerequisite 2 - Configuring the Host to Communicate With the Device 1-16
Installing and Building the Android SDK Project .. 1-16

Chapter 2: ANDROID DEVELOPMENT SDK
Introduction .. 2-1
Initialization .. 2-1

SDK Initialization .. 2-1
Setting SDK Handler Delegate .. 2-2
Setting Operation Mode ... 2-2

iv Zebra Scanner SDK for Android Developer Guide
Subscribing to Events .. 2-3
Connecting to a Scanner ... 2-4

Detecting Available Scanners .. 2-4
Connecting to an Available Scanner .. 2-5

Receiving Bar Code Data .. 2-7
Retrieving Scanner Attributes .. 2-8
Sending Remote Commands ... 2-12

Beep the Beeper .. 2-12
Disabling a Bar Code Symbology Type ... 2-13
Disabling the Scanner .. 2-14

Update Scanner Firmware ... 2-15

ABOUT THIS GUIDE
Introduction
The Zebra Scanner SDK for Android Developer Guide provides installation and programming information for the
Software Developer Kit (SDK) that allows Software Decode based applications for Android based devices.

Chapter Descriptions
This guide includes the following topics:

• Chapter 1, GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID provides information about
the Android Software Development Kit (Android SDK).

• Chapter 2, ANDROID DEVELOPMENT SDK describes how to connect to a scanner through the SDK,
retrieve bar codes, and send command and control messages using the included application as an example.

Related Documents
• RFD8500 Developer Guide, p/n MN002222Axx.

• Zebra Scanner SDK for iOS Developer Guide, p/n MN001834Axx.

• RFD8500 User Guide, p/n MN002065Axx.

• RFD8500 Quick Start Guide, p/n MN002225Axx.

• RFD8500 Regulatory Guide, p/n MN002062Axx.

• CRD1S-RFD8500 (1-Slot), CRDUNIV-RFD8500-1R (3-Slot), CRD4S-RFD8500 (4-Slot) Universal Charge
Only Cradles Regulatory Guide, p/n MN002224Axx.

• DS3678 Cordless Digital Imager Product Reference Guide, p/n MN-002689-xx.

• CS4070 Product Reference Guide, p/n MN000762Axx.

For the latest version of this guide and all guides, go to: www.zebra.com/support.

www.zebra.com/support

vi Zebra Scanner SDK for Android Developer Guide
Additional Resources
For further information on the various topics covered in this Developer Guide, also refer to:

• Android Studio Overview at http://developer.android.com/tools/studio/index.html

• Android Studio Training and Samples at https://developer.android.com/training/index.html

• Android API Guides at http://developer.android.com/guide/index.html

Notational Conventions
This document uses the following conventions:

• Italics are used to highlight chapters, sections, field names, and screen names in this and related
documents.

• Courier New font type is used to represent code snippets.

• bullets (•) indicate:

• Action items

• Lists of alternatives

• Lists of required steps that are not necessarily sequential

• Sequential lists (e.g., those that describe step-by-step procedures) appear as numbered lists.

Service Information
If you have a problem using the equipment, contact your facility's technical or systems support. If there is a
problem with the equipment, they contact the Zebra Technologies Global Customer Support Center at:
http://www.zebra.com/support.

When contacting Zebra support, please have the following information available:

• Product name

• Version number

Zebra responds to calls by e-mail, telephone or fax within the time limits set forth in support agreements.

If your problem cannot be solved by Zebra support, you may need to return your equipment for servicing and
will be given specific directions. Zebra is not responsible for any damages incurred during shipment if the
approved shipping container is not used. Shipping the units improperly can possibly void the warranty.

If you purchased your business product from a Zebra business partner, contact that business partner for
support.

NOTE This symbol indicates something of special interest or importance to the reader. Failure to read the note
does not result in physical harm to the reader, equipment or data.

CAUTION This symbol indicates that if this information is ignored, the possibility of data or material damage may
occur.

WARNING! This symbol indicates that if this information is ignored the possibility that serious personal
injury may occur.

http://developer.android.com/tools/studio/index.html
https://developer.android.com/training/index.html
http://www.zebra.com/support
http://developer.android.com/guide/index.html

Chapter 1 GETTING STARTED with the
ZEBRA SCANNER SDK for
ANDROID
Introduction
This chapter provides information about the Zebra Scanner SDK for Android - an architectural framework
providing a single programming interface to provide two way communication between Android based
applications and supported Zebra scanning devices.

Overview of the Zebra Scanner SDK for Android
The Android SDK provides an abstraction layer, delivered in the form of an Android Library (.aar file). This
library provides an API to provide the connection, command and control, and communication facilities required
to operate a Zebra scanner on the Android platform.

The Android SDK is broken into three parts:

• Scanner Control Application for Android - Installable application for Android devices to enable quick

testing and demonstration of the SDK capabilities on a Bluetooth® (BT) supported Zebra scanner or a
USB SNAPI scanner. The Scanner Control application is available for download from the Google Play
Store and is distributed within the SDK.

• Android SDK Library File - This is provided as standalone AAR file that can be imported into a new
Android Application. Android Studio is the development environment that is recommended.

• Android SDK Demo Application Project - This is a zip file containing the Scanner Control application
project files from Android Studio. It contains the source code to the application and the SDK library files
necessary to build, test and modify the application as necessary.

1 - 2 Zebra Scanner SDK for Android Developer Guide
Supported Scanners

Currently the following Zebra scanners are supported:

USB SNAPI

• PL3307

• DS457

• DS4308

• LS2208

• DS6878 and Presentation Cradle

• MP6210 (CSS + Scale) + EAS (Sensormatic).

Bluetooth

• CS4070 (in Bluetooth SSI Profile mode)

• LI4278 (in SSI Host Server mode or Cradle Host mode by scanning pairing bar code)

• DS6878 (in SSI Host Server mode or Cradle Host mode by scanning pairing bar code)

• RFD8500 (in default mode)

• DS3678 (In SSI BT Classic mode)

• LI3678 (In SSI BT Classic mode).

Table 1-1 lists the pairing methods that can be used for each scanner model.

NOTE To configure a device in the mode specified, refer to the appropriate Product Reference Guide, User
Guide, or Integration Guide.

Table 1-1 Pairing Methods

Scanner Model
Pairing Bar Code

Manual Pairing
Legacy ScanToConnect

CS4070 Yes Yes

DS3678 Yes Yes Yes

LI3678 Yes Yes Yes

DS6878 Yes Yes

LI4278 Yes Yes

RFD8500 Yes

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 3
System Requirements

The following system requirements are necessary to use the Scanner Control application (demo application).

• Hardware device supporting Android KitKat version 4.4, or later, with Bluetooth and USB port (only if
using USB scanners).

The following system requirements are necessary to develop and test applications, and to use the Scanner
Control application project for development and testing.

• Android Studio 1.3 or later installed on Windows or Linux

• Android API Level 19 or later (Demo application was built and tested with API Level 19)

• The Scanner Control Application Project (packaged as an Android Studio Project)

• Hardware device running Android Kit Kat 4.4 or later, or emulator. Note that in order to create a
connection to the scanner, a Bluetooth connection is required.

Installation and Configuration

Installing the Scanner Control Application

The Scanner Control application can be installed directly onto a mobile device. The following steps include
general guidelines for installation. Menus and options may vary depending on the version of Android running.

To install the demo application:

1. Previous versions (earlier than v1.0.16.0 of the Zebra Scanner Control application used a different name
and branding signature and must be manually uninstalled before installing the current version of the SDK
demo application.

To do this:

a. Go to Android Settings > Application Manager (this varies depending on the version and platform of
Android running).

b. Select the Android Scanner Demo App.

c. Select Clear Cache and Clear Data to remove any resident demo settings.

d. Select Uninstall to remove the demo application from the system.

2. Install the application using one of the following methods:

a. Using Google Play Store:

i. Go to https://play.google.com/store/apps/details?id=com.zebra.scannercontrol.app or search for
Scanner Control in Google Play Store.

ii. Install the Scanner Control application.

or

b. Manual Installation from the SDK package:

NOTE Android version Nougat (7.x) is the latest version that was tested.

NOTE The Scanner Control application is available for download from the Google Play Store and is distributed
within the SDK.

https://play.google.com/store/apps/details?id=com.zebra.scannercontrol.app

1 - 4 Zebra Scanner SDK for Android Developer Guide
i. Copy the file scanner_control_app_version.apk file included with the SDK package to the Android
device.

ii. Navigate to the saved location and select the APK package file.

iii. The Android OS provides a warning that the application is from an untrusted source and requires
that installation from unknown sources be enabled for this installation. This is normal. Select the
option to install from unknown sources.

3. The Android OS installs the application and installs a Scanner Control Application icon () in the

Apps menu.

Running and Configuring the Scanner Control Application

To run the application:

1. Select the Scanner Control application from the Android App menu.

2. After the splash screen appears, the overview message screen displays (Figure 1-1).

Figure 1-1 Scanner Control App - Overview

3. Select CONTINUE. The Pair New Scanner bar code displays.

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 5
4. From the Scanner Control App, select App Settings to configure the application.

Figure 1-2 Scanner Control App Menu - App Settings

5. The available settings are displayed in Figure 1-3. See Table 1-2 for settings descriptions.

Figure 1-3 App Settings

1 - 6 Zebra Scanner SDK for Android Developer Guide
Table 1-2 App Settings Descriptions

Setting Description

Reset Defaults Changes all settings to the defaults.

Background Notifications

Available Scanner Notifies the user when a new scanner is available for
connection.

Active Scanner Notifies the user when a scanner becomes connected.

Barcode Event Notifies the user when a bar code scans.

Scanner Detection

Auto Detection Automatically detects new scanners when they are paired or
connected via USB.

Pair New Scanner Barcode

Barcode Type Pairing bar code type to be displayed on the home screen of
the application:

• Legacy Pairing

Scanner must be configured in the correct host mode to
be paired and connected.

• ScanToConnect Suite

Scanner automatically changes its communication
protocol and configuration (set factory defaults or keep
current configuration) as configured in the
Communication Protocol and Set Factory Defaults
settings before connecting.

Communication Protocol Communication protocol to be used in ScanToConnect Suite
bar code. Application can connect only in the SSI over
Bluetooth Classic protocol.

Set Factory Defaults Determines whether or not the scanner changes its settings to
factory defaults before connecting.

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 7
Using Scanner Control Application with a Supported Device

To run the application:

1. There are two ways to connect a Bluetooth scanner.

a. Scan the pairing bar code. When the scanner and pairing bar code are configured correctly, scan the
pairing bar code to connect.

Figure 1-4 Pairing Bar Code

If your device has the November 2016 or later security patch you may need to click the PAIR button in
the confirmation dialog shown in Figure 1-5.

Figure 1-5 Pairing Confirmation

IMPORTANT This application demonstrates the various capabilities of the lower level SDK library, and is not
intended to be used for production functions.

1 - 8 Zebra Scanner SDK for Android Developer Guide
or

b. Pair the scanner manually. To pair the scanner manually, refer to the appropriate Product Reference
Guide, User Guide, or Integration Guide for instructions on how to pair the specific device.

2. When paired, the scanner displays in the Available Device List.

Figure 1-6 Available Device List

3. If using a USB scanner:

a. Configure its USB host mode to SNAPI.

b. Connect it to the Android device

c. The scanner appears in the Available Device List.

or

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 9
d. Select Find Cabled Scanner from the menu to display the SNAPI bar code.

Figure 1-7 Menu - Find Cabled Scanner

e. If there is a single scanner to connect, the application connects to the scanner automatically. If there
are no SNAPI scanners connected, the application displays the SNAPI bar code (Figure 1-8) to scan to
connect.

Figure 1-8 SNAPI Bar Code

f. If multiple USB SNAPI scanners are available, the application displays the available scanner list from
which the user can select the appropriate scanner for the application to connect.

1 - 10 Zebra Scanner SDK for Android Developer Guide
It may be necessary for the user to give the Android operating system permission to access the USB
device. Should a permissions message display, select OK.

Figure 1-9 Application Permission

4. When a device is selected in the Available Device List on page 1-8, the application attempts to connect to
the scanner. When the connection is made, Figure 1-10 displays.

Settings

From this screen you can exercise various options.

Figure 1-10 Settings - Active Scanner (Connected Device)

NOTE Scanning the pairing bar code or clicking Find Cabled Scanner displays this screen.

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 11
Beeper

Figure 1-11 Beeper Settings

LED

Figure 1-12 LED Control

1 - 12 Zebra Scanner SDK for Android Developer Guide
Symbologies

Figure 1-13 Symbology Settings

Vibration Feedback

Figure 1-14 Vibration Feedback

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 13
Data View

Select the Data View tab to see bar codes received.

Figure 1-15 Data View Tab

Advanced

Select the Advanced tab to Find Scanner and select an option to display Asset Information on page 1-14,
Battery Statistics on page 1-14 and to Update Firmware on page 1-15.

Figure 1-16 Advance Tab - Find Scanner

1 - 14 Zebra Scanner SDK for Android Developer Guide
Asset Information

Figure 1-17 Advance Tab - Asset Information

Battery Statistics

Figure 1-18 Advanced Tab - Battery Statistics

GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID 1 - 15
Update Firmware

Figure 1-19 Advanced Tab - Update Firmware and Firmware Update Process Help

1 - 16 Zebra Scanner SDK for Android Developer Guide
Setting Up the Zebra Scanner SDK for Android in Android Studio

Prerequisite 1 - Installation of Android Studio

To install Android Studio:

1. Download Android Studio from the Android developers site: https://developer.android.com/sdk/index.html.

2. Before running the Android Studio, run the SDK Manager to install API Level 19. For additional
instructions, go to: http://developer.android.com/tools/help/sdk-manager.html.

3. The Android Studio uses the Gradle build system. For more information and an overview of the Gradle
build system, review the documentation at: https://developer.android.com/sdk/installing/studio-build.html.

Prerequisite 2 - Configuring the Host to Communicate With the Device

Some devices require that you download and install a driver so that is recognized as a USB device on
Windows. If using Linux, the device has to be configured manually. Review the documentation regarding
installing the appropriate driver for the device: http://developer.android.com/tools/device.html.

Installing and Building the Android SDK Project

To install and build the Android SDK project:

1. Unzip the file android_scanner_sdk_demo_version_src.zip into a local directory. This directory is referred
to as dev_directory.

2. Open Android Studio and select Open an Existing Project.

3. Navigate to the dev_directory and select the AndroidScannerSDK folder:

dev_directory\AndroidScannerSDK

As this is the first time that Android Studio is opening the project, it begins creating all of the necessary
local project files and indexes. This may take a minute or two.

4. Copy the folder to the development host. This directory is called dev_directory.

5. Open the Android Studio.

6. Select Open an Existing Android Studio Project.

7. Navigate to the dev_directory and select the project AndroidScannerSDK under the src folder.

8. The Project tab on the left panel displays the contents of the Project, including the app project which is the
top level for the application source.

9. Select the Build option from the Menu bar. Click Make Project. This builds the APK application located
under: dev_directory\AndroidScannerSDK\app\build\outputs\apk.

https://developer.android.com/sdk/index.html
http://developer.android.com/tools/help/sdk-manager.html
https://developer.android.com/sdk/installing/studio-build.html
http://developer.android.com/tools/device.html

Chapter 2 ANDROID DEVELOPMENT SDK
Introduction
This chapter outlines the steps to connect to a scanner through the SDK, retrieve bar codes, and send
commands and control messages using the included Scanner Control application as an example. Relevant
code snippets are included.

Initialization

SDK Initialization

Before the application can use the underlying SDK, it must first be initialized and set up to communicate with it.
The Application class defined in the application, which extends the required
android.app.Application class creates the SDKHandler object. The following application code shows
how this is done.

Code Snippet - SDK Initialization Code
public class Application extends android.app.Application {

 //Instance of SDK Handler
 public static SDKHandler sdkHandler;

 ...
 ...

 //Barcode data
 @Override
 public void onCreate() {
 super.onCreate();
 sdkHandler = new SDKHandler(this);
 }

 ...
 ...
}

2 - 2 Zebra Scanner SDK for Android Developer Guide
When this object is passed to the SDKHandler, all necessary library initialization is performed and the
reference is stored as an Android Context object which is defined by Android 4.4+ as:

An "Interface to global information about an application environment. This is an abstract class whose
implementation is provided by the Android system. It allows access to application-specific resources and
classes, as well as up-calls for application-level operations such as launching activities, broadcasting and
receiving intents, etc."

The Application object can now provide the Interface to all SDK API methods. These are methods that call
"into" the SDK. Methods that call "out" (callbacks) are defined by the SDK API Delegate as shown in Setting
SDK Handler Delegate on page 2-2.

Setting SDK Handler Delegate
In order for the parent class to receive events from the SDK as well as call SDK methods, it must define a
delegate that conforms to the IDcsSdkApiDelegate interface definition.

Code Snippet - Setting SDK API Delegate
public class BaseActivity extends ActionBarActivity implements ScannerAppEngine,
IDcsSdkApiDelegate {

 // The Handler that gets information back from the BluetoothChatService
 protected final Handler mHandler = initializeHandler();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mScannerInfoList=Application.mScannerInfoList;
 TAG = getClass().getSimpleName();

 // Setting up the SDK delegate to receive events
 Application.sdkHandler.dcssdkSetDelegate(this);
 initializeDcsSdkWithAppSettings();
 }

The code that passes the BaseActivity as the defined SDK delegate, as shown in Code Snippet - Setting
SDK API Delegate, now contains the necessary inherited methods to receive events from the SDK to
determine scanner connection status, scanner availability, and the various data events that are sent up from
the SDK. Note that this must be set explicitly because the Application class owns the sdkHandler object.
As stated earlier, the global Application class is used to access the SDK API as shown in this example.

Setting Operation Mode
A client can set the operation mode interested. Currently Bluetooth and SNAPI are supported. You can set
multiple operation modes.

Code Snippet - Setting Operation Mode

Application.sdkHandler.dcssdkSetOperationalMode(DCSSDKDefs.DCSSDK_MODE.DCSSDK_OPMODE_BT_NO
RMAL);

Application.sdkHandler.dcssdkSetOperationalMode(DCSSDKDefs.DCSSDK_MODE.DCSSDK_OPMODE_SNAPI
);

ANDROID DEVELOPMENT SDK 2 - 3
Subscribing to Events
A client can subscribe to specific event types:

• DCSSDK_EVENT_BARCODE - Notifies the client of an available bar code from the active scanner.

• DCSSDK_EVENT_SCANNER_APPEARANCE - Notifies the client that a scanner that was paired to the host
is available for connection.

• DCSSDK_EVENT_SCANNER_DISAPPEARANCE - Notifies the client that a scanner is no longer available
for connection.

• DCSSDK_EVENT_SESSION_ESTABLISHMENT - Notifies the client that a connection to a scanner has
become active (connected and available to communicate).

• DCSSDK_EVENT_SESSION_TERMINATION - Notifies the client that a connection to a scanner has
terminated (can no longer be communicated with).

Code Snippet - Subscribing to Events

Following is an example of how to subscribe to these events:

int notifications_mask = 0;

 // We would like to subscribe to all scanner available/not-available events
 notifications_mask |=
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SCANNER_APPEARANCE.value |
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SCANNER_DISAPPEARANCE.value;

 // We would like to subscribe to all scanner connection events
 notifications_mask |=
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SESSION_ESTABLISHMENT.value |
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SESSION_TERMINATION.value;

 // We would like to subscribe to all barcode events
 notifications_mask |= DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_BARCODE.value;

 // subscribe to events set in notification mask
 Application.sdkHandler.dcssdkSubsribeForEvents(notifications_mask);

 // ...

In order for the client application to receive these events, the application must have a defined class that
implements the IDcsSdkApiDelegate interface. The application accomplishes this through the BaseActivity
class. Since all Activity classes extend the BaseActivity, all UI Activity classes can receive these
events.

2 - 4 Zebra Scanner SDK for Android Developer Guide
Connecting to a Scanner
This section describes how to perform the initial setup, discovery and connection to a scanner device via
Bluetooth using the Scanner Control application for Android as a reference example. For each topic, a link to
the Android Studio developer site is included.

Detecting Available Scanners

When scanners are paired to the Android host, they are provided to the application. The SDK must be told to
look for these scanners (some use cases would disable this feature). At the same time, any events the client
application is interested in should be subscribed to at this time.

Code Snippet - Detecting Available Scanners
int notifications_mask = 0;

 // We would like to subscribe to all scanner available/not-available events
 notifications_mask |=
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SCANNER_APPEARANCE.value |
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SCANNER_DISAPPEARANCE.value;

 // We would like to subscribe to all scanner connection events
 notifications_mask |=
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SESSION_ESTABLISHMENT.value |
 DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_SESSION_TERMINATION.value;

 // We would like to subscribe to all barcode events
 notifications_mask |= DCSSDKDefs.DCSSDK_EVENT.DCSSDK_EVENT_BARCODE.value;

 // enable scanner detection
 Application.sdkHandler.dcssdkEnableAvailableScannersDetection(true);

 // subscribe to events set in notification mask
 Application.sdkHandler.dcssdkSubsribeForEvents(notifications_mask);

When the sdkHandler calls dcssdkEnableAvailableScannersDetection(true), this enables
notifications of type DCSSDK_EVENT_SCANNER_APPEARANCE, and
DCSSDK_EVENT_SCANNER_DISAPPEARANCE. This allows the application to react to a scanner becoming
available for connection, discussed in Connecting to an Available Scanner.

ANDROID DEVELOPMENT SDK 2 - 5
Connecting to an Available Scanner

Synchronous Scanner Retrieval

There are two ways an application can become aware of an available scanner. The simplest method is to
query the SDK (ultimately the underlying Android host) for the scanners that are currently paired and available.
This is the synchronous method. This is performed by asking the SDK to pull its current list of available
scanners which it retrieves internally upon initialization.

Code Snippet - Synchronous Scanner Retrieval
// ...

 if (Application.sdkHandler != null) {
 mScannerInfoList.clear();
 Application.sdkHandler.dcssdkGetAvailableScannersList(mScannerInfoList);
 Application.sdkHandler.dcssdkGetActiveScannersList(mScannerInfoList);
 }

 // ...

As shown above, the sdkHandler API has two methods:

• dcssdkGetAvailableScannersList

• dcssdkGetActiveScannersList

These differ in that the dcssdkGetAvailableScannersList method retrieves only the scanner devices
that are available (i.e., were paired with the Android host). This is different than an established connection. The
method dcssdkGetActiveScannersList retrieves the scanners (in this version, it is always only one
device) that currently has an active connection/session to the SDK library.

Asynchronous Scanner Notification

When a scanner becomes available, the application is notified through the dcssdkEventScannerAppeared
event via the SdkApiDelegate (in the case of the app, this is the BaseActivity class) as shown below.

Code Snippet - Event Based Available Scanner
/* notify connections delegates */
public void dcssdkEventScannerAppeared(DCSScannerInfo availableScanner) {

 // ...
 // ... Code to update UI delegates and internal structures with
 // ... new scanner data
 // ...

}

As a result of the notification from the SDK method dcssdkEventScannerAppeared, the application can
process the available scanner information how it needs to (i.e., update UI component delegates and internal
data structures).

2 - 6 Zebra Scanner SDK for Android Developer Guide
Performing the Connection
In order to perform the connection, the scanner data must be retrieved either synchronously or asynchronously
using the methods described above. Now that the available devices are known, the client application can
decide which one it needs to connect to. As with an UI command the actual work should be put into a
background task as this allows the Main UI thread to proceed. For the purpose of this example we include this
code as well.

Code Snippet - Scanner Connection
public void connectToScanner(View view){
 new MyAsyncTask(scannerId).execute();
}
private class MyAsyncTask extends AsyncTask<Void,Integer,Boolean> {
 private int scannerId;
 public MyAsyncTask(int scannerId){
 this.scannerId=scannerId;
 }
 @Override
 protected void onPreExecute() {
 super.onPreExecute();
 progressDialog = new CustomProgressDialog(AvailableScannerActivity.this,
 "Connect To scanner...");
 progressDialog.show();
 }

 @Override
 protected Boolean doInBackground(Void... voids) {
 DCSSDKDefs.DCSSDK_RESULT result =
 DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_FAILURE;

 if (Application.sdkHandler != null) {
 result =
 Application.sdkHandler.dcssdkEstablishCommunicationSession(scannerId);
 }

 if(result == DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_SUCCESS){
 return true;
 }
 else if(result == DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_FAILURE) {
 return false;
 }
 return false;
 }

 @Override
 protected void onPostExecute(Boolean b) {
 super.onPostExecute(b);
 if (progressDialog != null && progressDialog.isShowing())
 progressDialog.dismiss();
 Intent returnIntent = new Intent();
 if(b){
 setResult(RESULT_OK, returnIntent);
 returnIntent.putExtra(Constants.SCANNER_ID, scannerId);
 }
 else{
 setResult(RESULT_CANCELED, returnIntent);
 }
 AvailableScannerActivity.this.finish();
 }
}

ANDROID DEVELOPMENT SDK 2 - 7
The additional code to handle to UI task was include for brevity, however the main SDK API being used is the
dcssdkEstablishCommunicationSession method which provides the bulk of the connection logic. The
result is either success of failure using the result codes defined in the DCSSDKDefs class of enums. A result
value of DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_SUCCESS indicates that the scanner connection
was successful and can be considered accessible.

Receiving Bar Code Data
In order to receive a bar code, first subscribe to the bar code as shown in Subscribing to Events on page 2-3.
After completing the event subscription, a class can either directly implement the IDcsSdkApiDelegate or
inherit it in a way as follows, for example.

Code Snippet - Processing Bar Code Event
public class BaseActivity extends ActionBarActivity implements IDcsSdkApiDelegate {

 // ...

 @Override
 public void dcssdkEventBarcode(byte[] barcodeData, int barcodeType, int
 fromScannerID) {

 Barcode barcode = new Barcode(barcodeData,barcodeType,fromScannerID);
 dataHandler.obtainMessage(Constants.BARCODE_RECIEVED,barcode).sendToTarget();

 // ...
 // Perform other kinds of notifications (i.e. Intents, etc.)
 // ...

}

This example creates a new Barcode object from the event data itself, which is used to create the bar code
message.

The example also uses the Android Message Handler framework to create a message that places the bar code
message onto the UI thread using sendToTarget().

NOTE The code described above leverages the Android Handler Framework to provide a decoupling from SDK
event to the UI thread. For more information on this kind of background to UI thread management, refer to
http://developer.android.com/training/multiple-threads/communicate-ui.html.

http://developer.android.com/training/multiple-threads/communicate-ui.html

2 - 8 Zebra Scanner SDK for Android Developer Guide
Retrieving Scanner Attributes
By retrieving scanner attributes, the developer can provide the client application with all the necessary
information required from the scanner. The argument format for performing an RSM GET Command uses the
following syntax.

Code Snippet - RSM GET XML Syntax
<inArgs>

<scannerID>ScannerID_Value</scannerID>
<cmdArgs>

<arg-xml>
<attrib_list>attr1,attr2,...,attrN</attrib_list>

</arg-xml>
</cmdArgs>

</inArgs>

The following example shows the application retrieving standard scanner asset information: Model Number,
Serial Number, Firmware Version String, the Configuration Name from 123Scan2, and the Date of
Manufacturing. Each of these values is a separate attribute as described previously in the syntax to retrieve.

Code Snippet - RSM GET Example
private void fetchAssertInfo() {

// get current Scanner ID
int scannerID = getIntent().getIntExtra(Constants.SCANNER_ID, -1);

if (scannerID != -1) {

// Creating beginning of XML argument string with Scanner ID
// of Active Scanner
String in_xml = "<inArgs><scannerID>" + scannerID

+ " </scannerID><cmdArgs><arg-xml><attrib_list>";

// Add attribute values to list
in_xml+=RMD_ATTR_MODEL_NUMBER;
in_xml+=",";
in_xml+=RMD_ATTR_SERIAL_NUMBER;
in_xml+=",";
in_xml+=RMD_ATTR_FW_VERSION;
in_xml+=",";
in_xml+=RMD_ATTR_CONFIG_NAME;
in_xml+=",";
in_xml+=RMD_ATTR_DOM;
in_xml += "</attrib_list></arg-xml></cmdArgs></inArgs>";

// Run as Async Task to free up UI
new MyAsyncTask(scannerID,

DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_RSM_ATTR_GET).execute(
new String[]{in_xml});

} else {
// Do not have a valid scanner ID, show popup error
Toast.makeText(this, Constants.INVALID_SCANNER_ID_MSG,

Toast.LENGTH_SHORT).show();
}

}

ANDROID DEVELOPMENT SDK 2 - 9
In this example, the OPCODE defined in DCSSDKDefs.DCSSDK_COMMAND_OPCODE is set to
DCSSDK_RSM_ATTR_GET which instructs the SDK Library to retrieve the values specified, which are:

• RMD_ATTR_MODEL_NUMBER - Scanner model number

• RMD_ATTR_SERIAL_NUMBER - Scanner serial number

• RMD_ATTR_FW_VERSION - Scanner firmware version

• RMD_ATTR_CONFIG_NAME - Scanner configuration filename (if one was used)

• RMD_ATTR_DOM - Scanner date of manufacture.

Ultimately this calls the interface executeCommand which is defined by the ScannerAppEngine interface
and extended by BaseActivity. Ultimately the call to the SDK API
dcssdkExecuteCommandOpCodeInXMLForScanner is made, which is part of the SDK Handler object
owned by the Application class as discussed earlier. This is the API call that sends the command to the
SDK Library to be queued for communication with the scanner.

Code Snippet - dcssdkExecuteCommandOpCodeInXMLForScanner API
public boolean executeCommand(DCSSDKDefs.DCSSDK_COMMAND_OPCODE opCode, String

inXML, StringBuilder outXML, int scannerID) {

if (Application.sdkHandler != null)
{

// get result from Scanner (not that this is a blocking call, but is
// being run on an AsyncTask away from the UI thread

DCSSDKDefs.DCSSDK_RESULT result =
Application.sdkHandler.dcssdkExecuteCommandOpCodeInXMLForScanner(

 opCode,inXML,outXML,scannerID);

// check result and return true or false

if(result == DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_SUCCESS)
return true;

else if(result == DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_FAILURE)
return false;

}
return false;

}

In this example, the call is made directly to the SDK API which sends the opcode out to the scanner. Each
attribute is retrieved in turn until they are all retrieved and a valid response is received from the scanner for
each one. The API call compiles the results into the outXML StringBuilder argument for return to the
caller. The syntax of the output is as follows:

2 - 10 Zebra Scanner SDK for Android Developer Guide
Code Snippet - RSM GET XML Syntax
<?xml version="1.0" encoding="UTF-8"?>
<outArgs>

<scannerID>scanner_ID</scannerID>
<arg-xml>
<modelnumber>model_number_value</modelnumber>
<serialnumber>serial_number_value</serialnumber>
<response>
<opcode>DCSSDK_RSM_ATTR_GET</opcode>

<attrib_list>
<attribute>

<id>attribut1</id>
<datatype>datatype_value</datatype>
<permission>permission_value</permission>
<value>attribut1_value</value>

</attribute>
<attribute>

<id>attibute2</id>
<datatype>datatype_value</datatype>
<permission>permission_value</permission>
<value>attribut2_value</value>

</attribute>
<attribute>

<id>attibuteN</id>
<datatype>datatype_value</datatype>
<permission>permission_value</permission>
<value>attributN_value</value>

</attribute>
</attrib_list>

</response>
</arg-xml>

</outArgs>

The actual elements returned for each attribute describe the attribute in its entirety:

• id - The Attribute number for which the next elements describe as shown in attributeN

• datatype - One of the following 11 data types.

• B - Byte - unsigned char

• C - Char - signed byte

• F - Bit Flags

• W - WORD - short unsigned integer (16 bits)

• I - SWORD - short signed integer (16 bits)

• D - DWORD - long unsigned integer (32 bits)

• L - SDWORD - long signed integer (32 bits)

• A - Array

• S - String

• X - Action

• permission - The permission of the data itself; a combination of one or more of the following letters:

• W - Write - Attribute value is writable

• R - Read - Attribute value is readable

• P - Persistent - Attribute value is non-volatile and persists across reboots

• value - The actual value of the attribute. This corresponds to the datatype (e.g., the value for an 'S'
datatype is a 16 bit signed number only)

ANDROID DEVELOPMENT SDK 2 - 11
Following is the XML result of the RSM GET command as used in this example (getting all asset information):

Code Snippet - RSM GET Return Set
<?xml version="1.0" encoding="UTF-8"?>
<outArgs>

<scannerID>6</scannerID>
<arg-xml>

<modelnumber>iPL3307-RFD8500</modelnumber>
<serialnumber>150209008500B </serialnumber>
<response>
<opcode>DCSSDK_RSM_ATTR_GET</opcode>
<attrib_list>

<attribute>
<id>533</id>
<datatype>S</datatype>
<permission>R</permission>
<value>iPL3307-RFD8500 </value>

</attribute>
<attribute>

<id>534</id>
<datatype>S</datatype>
<permission>R</permission>
<value>150209008500B </value>

</attribute>
<attribute>

<id>20004</id>
<datatype>S</datatype>
<permission>R</permission>
<value>PAABLS00-004-R00 </value>

</attribute>
<attribute>

<id>616</id>
<datatype>S</datatype>
<permission>RWP</permission>
<value>Modified </value>

</attribute>
<attribute>
<id>535</id>
<datatype>S</datatype>
<permission>R</permission>
<value>15May15</value>

</attribute>
</attrib_list>
</response>

 </arg-xml>
</outArgs>

2 - 12 Zebra Scanner SDK for Android Developer Guide
Sending Remote Commands
The Attribute SET mechanism allows a client application to perform many command and control functions
on the scanner, from disabling a specific bar code symbology (F - Flag Attribute) to rebooting the device (X -
Action Attribute). Following are examples that illustrate how to do this. For a specific product, refer to the
device Product Reference Guide to determine what attributes the device supports and the values for that
device.

Beep the Beeper

A simple command example is to sound the beeper on the scanner (if it has one).Tthe following example
includes the application UI portion to show how the Aysnc Task can process this. For the executeCommand
function see Code Snippet - dcssdkExecuteCommandOpCodeInXMLForScanner API on page 2-9.

Code Snippet - Beep the Beeper
public void beeperAction(View view) {

// set beeper to perform a HIGH pitch SHORT duration tone
int value = RMD_ATTR_VALUE_ACTION_HIGH_SHORT_BEEP_1;

String inXML = "<inArgs><scannerID>" + getIntent().getIntExtra(
Constants.SCANNER_ID, 0) + "</scannerID><cmdArgs><arg-int>" +

+ Integer.toString(value) +"</arg-int></cmdArgs></inArgs>";

// Exceute in an AsyncTask to remove UI blocking
new MyAsyncTask(getIntent().getIntExtra(Constants.SCANNER_ID,

0),DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_SET_ACTION).execute(
new String[]{inXML});

}

private class MyAsyncTask extends AsyncTask<String,Integer,Boolean> {
int scannerId;
DCSSDKDefs.DCSSDK_COMMAND_OPCODE opcode;

public MyAsyncTask(int scannerId, DCSSDKDefs.DCSSDK_COMMAND_OPCODE opcode){
this.scannerId=scannerId;
this.opcode=opcode;

}

@Override
protected void onPreExecute() {

super.onPreExecute();
progressDialog = new CustomProgressDialog(BeeperActionsActivity.this,

"Executing beeper action..");
progressDialog.show();

}

@Override
protected Boolean doInBackground(String... strings) {

return executeCommand(opcode, strings[0], null, scannerId);
}

(continued on next page)

ANDROID DEVELOPMENT SDK 2 - 13
@Override
protected void onPostExecute(Boolean b) {

super.onPostExecute(b);
if (progressDialog != null && progressDialog.isShowing()) {

progressDialog.dismiss();
}
if(!b){

Toast.makeText(BeeperActionsActivity.this,
"Cannot perform beeper action", Toast.LENGTH_SHORT).show();

}
}

}

This example is not specifically concerned with the return XML string because it is just requesting an action to
be carried out (which is why a null value is passed into executeCommand()). The example requests setting
the beeper command to RMD_ATTR_VALUE_ACTION_HIGH_SHORT_BEEP_1 which is a specific pitch and
tone (typically this would use the value set by the UI picker, but this example uses a specific value for brevity).
The SDK API takes the rest of the underlying XML and communication to cause the beeper to sound.

The result for a command like this is returned via the onPostExecute argument Boolean b which is be true
on success; false otherwise.

Disabling a Bar Code Symbology Type
The client application can control symbologies on the scanner and determine whether it decodes the supported
symbology. This example disables the UPC-A symbology so the scanner can not decode it. This example does
not include the UI Async Task code, but focuses on the construction of the XML arguments.

Code Snippet - Disable UPC-A Example
// ...
// UI code removed
// explicitly setting to UPC-A to false for example
// This is Attribute '1' - see XML string below
// ...

String inXML =
"<inArgs>" +

"<scannerID>" + getIntent().getIntExtra(Constants.SCANNER_ID, 0) +
"</scannerID>" +
"<cmdArgs>" +

"<arg-xml>" +
"<attrib_list><attribute>" +

"<id>1</id>" +
"<datatype>F</datatype>" +
"<value>False</value>" +

"</attribute></attrib_list>" +
"</arg-xml>" +

"</cmdArgs>" +
</inArgs>";

// ...
// UI code removed
// We are going to use Attribute STORE to make change permanent
// so it persists through scanner reboots
// ...

// Execute Async Task to remove from UI thread
new MyAsyncTask(getIntent().getIntExtra(Constants.SCANNER_ID, 0),

DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_RSM_ATTR_STORE, view).execute(
inXML);

2 - 14 Zebra Scanner SDK for Android Developer Guide
This example explicitly sets the values for UPC-A and false. Typically these values are retrieved from the UI
settings (refer to the application for more details). In the XML string, the example gets the scanner ID from the
UI and sets the ID to '1' which is Attribute 1. The datatype is set to 'F' as the UPC-A setting is a Flag datatype
and accepts either 'True' or 'False' as an acceptable value. Once the XML string is set, a call is made using the
AsyncTask defined in the SymbologiesActivity class and the opcode
DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_RSM_ATTR_STORE is passed in as this is an Attribute
Store operation. If the setting is temporary and to be restored to its default state after a scanner reboot, use the
opcode DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_RSM_ATTR_SET.

Disabling the Scanner

Code Snippet - Disable the Scanner

Certain use cases require disabling scanning in the scanner, and then re-enabling it when needed. As with
most operations, this involves using an opcode and the associated XML argument string.

public void disableScanning(View view) {

String in_xml = "<inArgs><scannerID>" + scannerID + "</scannerID></inArgs>";
new MyAsyncTask(

scannerID,DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_DEVICE_SCAN_DISABLE).
execute(new String[]{in_xml});

}

// ...
// AsyncTask code
// ...

@Override
protected Boolean doInBackground(String... strings) {

if (Application.sdkHandler != null)
{

// calling execute command SDK API
DCSSDKDefs.DCSSDK_RESULT result =

Application.sdkHandler.dcssdkExecuteCommandOpCodeInXMLForScanner(
opCode,inXML,outXML,scannerID);

// return true if DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_SUCCESS
// false otherwise
if(result== DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_SUCCESS) {

return true;
}
else if(result==DCSSDKDefs.DCSSDK_RESULT.DCSSDK_RESULT_FAILURE)

return false;
}
return false;

}

This example makes a call to dcssdkExecuteCommandOpCodeInXMLForScanner using opcode
DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_DEVICE_SCAN_DISABLE. This disables the scanner so
it can not illuminate and scan bar codes. To re-enable the scanner, use opcode
DCSSDKDefs.DCSSDK_COMMAND_OPCODE.DCSSDK_DEVICE_SCAN_ENABLE.

Most operations performed with the SDK API involve passing opcodes and XML arguments to the
dcssdkExecuteCommandOpCodeInXMLForScanner method. For a list of all of available opcodes, refer to
the included JavaDocs under the DCSSDKDefs.DCSSDK_COMMAND_OPCODE enum.

ANDROID DEVELOPMENT SDK 2 - 15
Update Scanner Firmware
Client application can update a connected scanner firmware using a plug-in file comes with 123Scan. After the
update application needs to send a command to the scanner to use the updated firmware. Upon receiving that
command scanner will be rebooted and flash the new firmware. Client application can abort the firmware
update in the middle of the process.

Code Snippet - Update Scanner Firmware Using Plug-in File
String in_xml = "<inArgs><scannerID>" + scannerID + "</scannerID><cmdArgs><arg-string>" +
selectedPlugIn.getAbsolutePath() + "</arg-string></cmdArgs></inArgs>";

DCSSDKDefs.DCSSDK_RESULT result =
Application.sdkHandler.dcssdkExecuteCommandOpCodeInXMLForScanner(DCSSDK_UPDATE_FIRMWARE,in
XML,outXML);

Progress and status of the firmware update will be notified to the application using this event:

dcssdkEventFirmwareUpdate(FirmwareUpdateEvent firmwareUpdateEvent

Code Snippet - Aborting Firmware Update
String in_xml = "<inArgs><scannerID>" + scannerID + "</scannerID></inArgs>";

DCSSDKDefs.DCSSDK_RESULT result =
Application.sdkHandler.dcssdkExecuteCommandOpCodeInXMLForScanner(DCSSDK_ABORT_UPDATE_FIRMW
ARE
,inXML,outXML);

Code Snippet - Start New Firmware
String in_xml = "<inArgs><scannerID>" + scannerID + "</scannerID></inArgs>";

DCSSDKDefs.DCSSDK_RESULT result =
Application.sdkHandler.dcssdkExecuteCommandOpCodeInXMLForScanner(DCSSDK_START_NEW_FIRMWARE
,inXML,outXML);

2 - 16 Zebra Scanner SDK for Android Developer Guide

MN002223A04 Revision A - June 2017

Zebra Technologies Corporation
Lincolnshire, IL U.S.A.
http://www.zebra.com

© 2017 ZIH Corp and/or its affiliates. All rights reserved. ZEBRA and the stylized Zebra head are
trademarks of ZIH Corp, registered in many jurisdictions worldwide. All other trademarks are the
property of their respective owners.

	ZEBRA SCANNER SDK for ANDROID DEVELOPER GUIDE
	Warranty
	Revision History

	Table of Contents
	ABOUT THIS GUIDE
	Introduction
	Chapter Descriptions
	Related Documents
	Additional Resources
	Notational Conventions
	Service Information

	GETTING STARTED with the ZEBRA SCANNER SDK for ANDROID
	Introduction
	Overview of the Zebra Scanner SDK for Android
	Supported Scanners
	USB SNAPI
	Bluetooth

	System Requirements

	Installation and Configuration
	Installing the Scanner Control Application
	Running and Configuring the Scanner Control Application
	Using Scanner Control Application with a Supported Device
	Settings
	Data View
	Advanced

	Setting Up the Zebra Scanner SDK for Android in Android Studio
	Prerequisite 1 - Installation of Android Studio
	Prerequisite 2 - Configuring the Host to Communicate With the Device
	Installing and Building the Android SDK Project

	ANDROID DEVELOPMENT SDK
	Introduction
	Initialization
	SDK Initialization
	Code Snippet - SDK Initialization Code

	Setting SDK Handler Delegate
	Code Snippet - Setting SDK API Delegate

	Setting Operation Mode
	Code Snippet - Setting Operation Mode

	Subscribing to Events
	Code Snippet - Subscribing to Events

	Connecting to a Scanner
	Detecting Available Scanners
	Code Snippet - Detecting Available Scanners

	Connecting to an Available Scanner
	Synchronous Scanner Retrieval
	Code Snippet - Synchronous Scanner Retrieval
	Asynchronous Scanner Notification
	Code Snippet - Event Based Available Scanner
	Performing the Connection
	Code Snippet - Scanner Connection

	Receiving Bar Code Data
	Code Snippet - Processing Bar Code Event

	Retrieving Scanner Attributes
	Code Snippet - RSM GET XML Syntax
	Code Snippet - RSM GET Example
	Code Snippet - dcssdkExecuteCommandOpCodeInXMLForScanner API
	Code Snippet - RSM GET XML Syntax
	Code Snippet - RSM GET Return Set

	Sending Remote Commands
	Beep the Beeper
	Code Snippet - Beep the Beeper

	Disabling a Bar Code Symbology Type
	Code Snippet - Disable UPC-A Example

	Disabling the Scanner
	Code Snippet - Disable the Scanner

	Update Scanner Firmware
	Code Snippet - Update Scanner Firmware Using Plug-in File
	Code Snippet - Aborting Firmware Update
	Code Snippet - Start New Firmware

